
AD-AOBZ 238 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF MATHEMATICS P/B 12/1
ITERATIVE ELLIPSOIDAL TRIMMING U)
FEB 80 L S GILLUCK N00014-75-C-0555

UNCLASSI FIED TR-15 N



ITERATIVE By TRIMING

011) LAURENCE S. GILLICK

CDEPARTMENT OF MATHEMATICS

00 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS

NORTHEASTERN CNIVERSITY

1,ACHUSW.

JI

i F P, ARY Ll. ZgaO ELECTE.II

PREPARED CINDER CONTRACT

N00014-75-C-0555 (NR-042-331)

FOR THE OFFICE OF NAVAL RESEARCH

DISTMIUTION STAT-TE~ A]
Approved fo: public release;

Dietribution Unlimited

DE.ARTMEN T OF MATHZMATICS

YASSACHUSETTS L STIT.TE C C-

CMLBSRIDGE, A S"CHLSETTS

s-V 

8l.0 8 20 2

-- 80 , 24 002



ITERATIVE ELLIPSOIDAL TRIMMING,

by T

Lurenc e S. /Gillick I

Department of Mathematics

Massachusetts Institute of Technology

Department of Mathematics

Northeastern University

HT I IGU

Di stribut ioni

*Availability Codes
Avail and/or

D1 st special

>1L



ITERATIVE ELLIPSOIDAL TRIMMING

by

Laurence S. Gillick

Department of Mathematics

Massachusetts Institute of Technology

Department of Mathematics

Northeastern University

ABSTRACT

The iterative ellipsoidal trimming algorithm is in-

troduced as both a clustering method and an estimator of

location and shape. Its power as a data analytic tool is

investigated and the asymptotic distribution of its

stationary point is derived. In addition, several scale

estimators are proposed and studi.ed.
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Chapter 1

Introduction

It is not uncommon in scientific or technological

work for an investigator to be confronted with a collection

of entities and for him then to wonder whether that collection

is, in some sense, homogeneous or whether, instead, it is

made up of several distinct subgroups. That branch of

statistics known as cluster analysis is concerned with

providing a body of techniques which will be generally use-

ful in discovering subpopulations. It Ls to this subject

that this dissertation seeks to make a contribution.

The central aim of this work is to introduce what we

shall refer to as the iterative ellipsoidal trimming algorithm

(for brevity's sake, IET) as a method for discovering clusters

and to study some of its properties. We define IET as follows.

Suppose that we have n observations in Rk . X ,... x n . To

start the algorithm, initial estimates (starting values)

of the mean and covariance of the cluster being sought must

be provided: (1 Z0)" Sometimes, when we are in complete

ignorance of the distribution of the X's, it is appropriate

to let l0 = X; in other situations u0 may be derived

from previous analysis or it may be an arbitrary point in a

certain region of Rk. Usually, Z0 is taken to be Ik ,
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the k x k identity matrix. To perform an iteration, one

specifies a p, which represents the proportion of the

observations to be included in the computation of the next

estimates, (P, i), and calculates the Mahalanobis distance

of each X i  from 40 : D  ~ (X -u 0i 0 T0 Xi1 -001(i- )  hn

i (np] E X
ieL

and

Z = [np] z (Xi - 1) (Xi - 1j)icL

whr i:D 2 2 , D 2 is the r t h order
where L = {i < D([np]) r)

statistic of the D2's, and [t] is the greatest integer < t.

Of course, one performs the next iteration by again choosing

a p and then treating (N, X) as the new (u 0 , Z 0 ). We

will say that IET has converged (for fixed p) if on two suc-

cessive iterations we find that L, the set of indices, does not

change. Equivalently, we will say that IET has converged

if (i, Z) stays the same on two successive iterations.

It is appealing to call this final estimate a stationary

point (of the sample). Sometimes, it is too time consuming

to wait for IET to converge; then it is reasonable to simply

continue until successive changes in the estimates (u, Z)

are sufficiently small.
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In successive iterations of the algorithm, p may be

allowed to change or it may be kept constant; often thLz

decision may fruitfully be made interactively, that is to

say, after looking at the last (P., ).The choice of a

sequence of p's will depend on the goal of the analysis.

We will have two separate but closely related intentions

in mind. First, we wish to find large clusters and second,

having found a large cluster, we wish to obtain robust

estimates of its mean and covariance, N~, X), with the idea

of using them in the search for smaller clusters in the

tails of the large one. We hope to discuss the problem

of finding such "hidden" clusters in a subsequent paper.

It is pertinent to remark now, however, that we are

especially interested in IET because it appears to yield

a plausible estimator when there is asymmetric contamination

(for instance, a small cluster) in the tails of the sample.

In chapter 2 we deal with the problem of using IET

to discover clusters. There we also examine a certain

lack of robustness characteristic of "k-means" algorithms,

and how IET avoids this difficulty. Chapter 3 contains

a discussion of the asymptotic properties of IET, always

supposing that there are no outliers (isolated points far

away from the bulk of the observations) or small hidden

clusters. Instead, the data will be assumed to be purely
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from some spherically symmetric or ellipsoidal distribution.

The fourth chapter presents Monte Carlo results concerning

the performance of IET in the presence of outliers and

small clusters.

Finally, in chapter 5 we take up the question of

scale estimation. When data that are far from (,5, Z) are

trimmed, inevitably the next estimate of Z is biased

towards 0; basically, X is an estimate of cX for some c

such that 0 < c < 1. Now this is a matter of no consequence

when we are only interested in finding the location and

shape of a cluster. Furthermore, IET is unaffected when

is multiplied by a constant, since the ordering of the

Mahalanobis distances is unchanged. However, when we want

2
to compare the D of an X to two different clusters,

it is imperative that we "scale up" our estimates of

their X's. We must, in essence, estimate and divide out

the "c" referred to above.

Iterative ellipsoidal trimming has been investigated

before by other statisticians, most notably by Gnanadesikan

and his coworkers Kettenring and Devlin [5, 7, 8]. The

focus in the past, however, has been on Monte Carlo studies

of the utility of this algorithm in the robust estimation of

covariance matrices. It has been shown to be reasonably

reliable for this purpose [5].



Chapter 2

Finding Clusters

In this chapter we shall discuss and illustrate the

use of IET in discovering clusters in a data set, and

carry out a comparison with a natural competitor, the

k-means algorithm. It is expected that IET will be a use-

ful tool when one wishes to find ellipsoidal clusters in

a high dimensional Euclidean space (where by high we mean

"greater than two"). The basic rationale behind its use

is that it will tend to climb up density gradients, stopping

when it reaches an ellipsoidal region containing [np] observa-

tions whose sample mean is just its center, and whose sample

covariance will generate its "shape".

There are several k-means algorithms, the different

versions differing as to whether or not a covariance matrix

is estimated for each cluster and as to how many observations

are reclassified before the k means (and possibly, covariances)

are updated. We will consider two versions of this general

method; both of them update the means and covariances

after reclassifying all of the data. The following algorithm

will be referred to as k-means 2. Suppose Xl,...,X n are

our observations and (uIl,Z I ),...,(Pk,zk) are our current

estimates of the means and covariances of k clusters. Let
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2
D .= (Xi - iJ)'X (Xi - Ij) and classify X. into the

th cluster ifJ0

2 mm 2

D. = min D...'JO lj<k 

Let L. = {i : Xi  is classified in the jth cluster}.

Then, the next estimates are

uj() iL. X

and

(1) -i ~(l) ~(1)
Zj = ILj I (xi  - 1 Hj )1 i - j )'

iLj

(where jsj, for a set S, is the number of elements S contains),

or, to put it another way, the sample means and covariances

of the new clusters. If we fix 7. = I, the identity of the

appropriate dimension, for all j and update only the means

after reclassifying by Euclidean distance, then the above

algorithm reduces to what we shall call k-means 1. For

further discussion of k-means algorithms, one might refer

to either Hartigan's book on clustering algorithms [9] or

the volume by Duda and Hart on pattern recognition [6].

Chernoff appears to have been the first to suggest that
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it would be helpful to estimate the covariances of the

different clusters [3], though Rohlf [11] made a similar

recommendation in the context of hierarchical clustering.

The basic idea which underlies both IET and k-means

is that if one has an approximation to the mean of a cluster

and one computes a new estimate of the mean based only on

paints currently thought to belong to the claster (based on

the approximation), then the new estimate will be better

than the old one. In one dimension, in the case of IET,

one imagines a situation like that in Figure 2.1. There,

the new estimate is the mean of all the observations con-

tained between the brackets and will clearly be closer to

the true mean than was the starting value.

Now there are three important ways in which k-means

and IET differ. IET defines the current cluster in a

rather conservative fashion, namely as those points within

2some D of the current (Ii, 7) • On the other hand,
th

k-means defines the j cluster as everything that is closer

to (CIj, 7) than to any of the other cluster centers.

Hence, a k-means cluster may have unbounded volume. The

second basic difference is that when using IET, the

statistician specifies the proportion of data points to

be included within the ellipsoidal "window" whose location,

shape, and orientation the algorithm computes. Of course,



-8-

k-means lets the proportions vary according to the results

of its classification scheme. Finally, and by definition,

IET only searches for one cluster at a time, while k-means

tries to locate k clusters simultaneously.

Several important consequences follow from these

remarks. Since a k-means cluster can be unbounded, even

if the starting value for a given cluster is very good,

one iteration can actually carry the cluster center far

away from the true center, if some outlying observation

happens to be newly classified into that cluster. An

outlier can, in essence, take hold of a perfectly good

cluster and, in some cases, ultimately have it all to

itself. In the case of k-means 2, a more subtle and, in

some respects, a more disturbing occurrence is possible.

If an outlier or an observation from another population

is misclassified into a cluster, it will tend to increase

the estimate of its scale, poerhaps by a considerable amount.

Since 7 will then be quite "large", Mahalanobis distances

to that cluster will tend to be small; as a result, this

cluster will tend to absorb all of the other clusters.

This latter point brings to mind our earlier comment that

k-means does not allow the statistician to control the

number of data points in a cluster.
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Since IET only looks at observations within a bounded

ellipsoidal region that is forced to contain a certain number

of data points, it is relatively immune to these sorts

of robustness problems. It may be objected that to ask

the statistician to specify p (essentially, the size of

the region) is to ask too much, as he m~ay have no prior

information about the distribution of the sample. But it

is our view that lET is an exploratory tool (in the sense 'J

that Tukey uses this expression [121) and it must be used

in an exploratory spirit. One specifies a sequence of p's

and sees what the algorithm does, that is, where the sequence

of estimates, (1,Z), goes; one chooses a new starting value

and a new sequence of p's and observes again. If there is

an ellipsoidal cluster to be found and p is taken to be

sufficiently small (no bigger than the proportion of points

in the cluster), then our experience suggests that lET is

likely to find it. The basic rule of thumb is that if

several different starting points and different sequences

of p's lead to convergence to approximately the same place,

then one should suspect that a cluster has been found. One

should then try increasing p, using the found cluster as a

starting point, to get a feel for how big the cluster might

be - if one increases p from 0.4 to 0.6 without changing

the estimate of location, ;i, very much, then this finding

MILL-
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both reassures us that the cluster is real and provides a

bound on its size. Of course it will then be important

to make plots and perhaps use other devices to make sure

that the sample really does have a mode where we think it

does. One situation to beware of can arise when p is

taken to be bigger than any cluster in the sample and is

best described by the diagram in Figure 2.2. Here, each of

the two clusters, one might imagine, contains 50% of the

observations and p was set at 70%. Of course, given that

one was seeking a cluster with 70% of the data, this result

(the distribution in the box) isn't so bad.

A further important caveat concerns the situation

when [np] is very small, for thenwe are likely to obtain

very unreliable results. IET may then have points of con-

vergence at many locations of no interest, just because of

the granularity of the distribution at that "window" size

(where by "window" size we just mean the number of observa-

tions inside the ellipsoid) . one wants the ellipsoidal

window to be big enough so that when we look through it,

we can disti~nguish the trend, or signal, from the noise.

Next we will consider several examples so as to

illustrate a number of the above generalities. First we

review an example on page 195 of Duda and Hart [6]. A

sample, consisting of 8 N(-2,1) and 17 N(2,1) observations



is to be clustered. We find that k-means 1 converges from

a variety of starting values to two clusters with means

-2.18 and 1.68 (we are assuming that we know that there

are two clusters). This happens to be a perfect clustering,

a result made possible by the fact that the data from the

two distributions happen to be nonoverlapping. We find

that k-means 2 also converges to these two clusters from

"good" starting values like -2,2, but not from "bad"

starting valueslike -2,7. Here, however, we will not

focus on the relevance of good starting values, but in-

stead on the question of robustness against outliers.

Suppose now that one additional observation, at x = 25,

is added to the sample. We set the starting values at -2,2

and apply k-means 1, obtaining the results in Table 2.1.

Obviously, what has happened is that the outlier at x = 25

now has the second cluster all to itself.

Next we apply k-means 2 to the same data. Since we
~ 2~

are working in one dimension we will write a. for j.,

Taking the starting values to be the population parameters,

we obtain the successive estimates in Table 2.2. There,

when the variance of cluster 2 becomes large, most points

become "close" to it and "far" from cluster 1, whose

variance gets ever smaller. What we are observing here
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is an inherent instability in the k-means 2 algorithm.

The point of the preceding example is that one

outlier can completely throw off our search for large

clusters. In general, data with many outliers will lead

to a k-means clustering which assigns the bulk of the

centrally located data to one cluster and the rest to

however many other clusters there are. Next we examine

a more interesting example and compare the performance of

IET and k-means.

We generate a sample of 300 N( I , 12), 300 N(or2i 1 2),

300 N( 3,2)We and 100 Np 400le 2 ) observations where 3 I0 (00) ,

2 -(6, 0)', and i= (12, 0)', and attempt to cluster it.

When k-means 1 is applied to these data using starting

values (1, 0)', (5, 0)', (14, 0)', it converges to three

clusters whose means are (2.11, 0.30)', (5.80, 0.25)',

(13.13, 0.31)', which is a relatively satisfying result.

Unfortunately, if the three starting values are (-3, 0)',

(2, 0)', (7, 0)', k-mean 1 converges to three clusters

whose means are (-23.48, 3.55), (2.28, 0..19), (12.21, 0.21)

and the first of the clusters contains only 27 points.

When k-means 2 is applied to the same data, using

the population parameters for the starting values of the

three clusters, the algorithm yields, on the fourth
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iteration, these means and covariances:

(3.13 \ (6.87 4.22

0.37 ), 4.22 6.03

5.9710-3 2 x 10-3

-0.1 2 x10- 8 x103

-1980.174 -. 17

0.07 ) -(0.17 0.96)

where the three clusters contain 723, 4, and 273

observations, respectively. The third cluster is quite

good but the first cluster has absorbed practically all

of the second one, as well as almost all of the outliers.

On the fifth iteration, the rest of cluster 2 is absorbed

by cluster 1. If the algorithm is allowed to continue,

using only two clusters now, cluster 3 will also be

gradually absorbed by cluster 1. What happens is that

the outer edges of cluster 3 are nibbled away bit by

bit; at each stage its variances are thereby reduced

making all of its remaining points closer to cluster 1.

Suppose now that we undertake a search for these

three clusters, using IET. It would be natural to take

the sample mean and covariance of all of the data as a
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starting value. Then, 3 iterations of IET, with p set

equal to 0.3, lead to the estimates

(5.94 1.08 -0.07

-0.05 , -0.07 0.92

which are excellent. If we take 'i = (1, 2)' and

Z = 12 as starting values and set p = 0.3, then IET com-

putes the sequence of means: (0.31, 0.15)', (0.1, 0.04)',

(0.05, -0.01)' and stops with the final covariance

estimate being

0.9 0.02

( 0.02 0.94

When, again, p =0.3 and the starting values are i = (10, 10)',

Z = 121 the sequence of sample means is (9.92, 1.38)',

(10.95, 0.34)', (11.47, 0.2)', 11.67, 0.12)',

(11.79, 0.09)', (11.87, 0.13)', (11.90, 0.13)',

(11.92, 0.13)' and the final covariance estimate is

( 0.98 -0.06)

-0.06 1.10)

In examining the pattern of convergence in the last two



trials, one is struck by the fact that it is similar to

that of geometric convergence, although the rate appears

to gradually change as the stopping point is approached.

In the next chapter an asymptotic analysis of IET will

reveal why this phenomenon occurs.

So far p has been set to the "right" value (eachI cluster containing 30% of the entire sample with an

additional 10% contamination by outliers). Therefore, one

might worry that our success so far is rather artificial.

So set p= 0.2 and take P = (4, 4)' = 12 as starting

values. Then the sequence of means is (4.54, 0.69)',

(5.32, 0.45)', (5.82, 0.3)', (5.89, 0.22)', (5.90, 0.13)',

(5.91, 0.10)', (5.92, 0.10)', (5.93, 0.09)', (5.93, 0.08)'.

In general, setting p at too small a value will not be

damaging, and we see in the preceding trial that the rate

of convergence was not even substantially affected by the

fact that p was only 2/3 of the true value for the

cluster being sought.

on the other hand, when p is bigger than the

proportion of points in the cluster, it is possible to

encounter difficulties. For instance, if we again work

with the same data, set p =0.5 and use the sample mean

and covariance of all the observations as starting values,

after 11 iterations IET converges to a cluster with mean
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and covariance:

0.09 o, .20 0.48

Furthermore, upon examining the 500 points included in

this final cluster, we learn that 251 are from the

N ((0, 0)', 12) distribution, 246 are from the

N j(6, 0)', 12) distribution, and the other 3 are outliers

(from the N ((0, 0)', 40012) distribution). This cluster

is described in Figure 2.3.

We do not claim that the remarks we have made about

k-means are novel and indeed it may be objected that some

k-means algorithms currently in use have already been

immunized against at least some of our criticisms. For

instance, by allowing the introduction of a new cluster

when an observation is "too far" from all of the current

clusters, we can prevent outliers from taking hold of

large clusters and pulling them far away from the bulk of

the data. It may even be possible, through the use of

other ad hoc addenda to the k-means algorithm, to eliminate

the instability in k-means 2. Maronna and Jacovkis [10]

compare several different variable metric clustering

methods, (including k-means 2 with one observation
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reclassified per iteration and conclude, after noting the

instability we have pointed out, that the only such

method they would recommend is that same k-means 2 but

with the covariances normalized by the requirement Z1=1

This method has the weakness that it does not really allow

for the possibility that different clusters may have quite

different scales. Another approach would be to estimate

the covariance using only the central portion of a cluster.

(One might then use the methods of chapter 5 to "scale up"

those estimates.) our purpose in discussing k-means has

been to highlight the basic differences between it and

lET, which is a natural competitor. No doubt experienced

users of either algorithm will be able to successfully

cluster a sample with genuine ellipsoidal clusters.

Of course IET does not need to be "patched up"; its

simplest, most fundamental form is already, in a certain

sense, robust. An important dividend is that the form of

IET that we propose to use in practice (and have illustrated

in this chapter) is sufficiently simple for it to admit

fruitful asymptotic analysis, a task which we undertake

in the next chapter.



Chapter 3 - Asymptotics

In this chapter we study the asymptotic behavior of

IET when there is only one cluster to be found and there

are no outliers. The word "asymptotic" is used here in

two different senses: we imagine that (1) the sample size

is large or infinite and/or (2) that certain parameters *1
describing the algorithm approach limiting values. The

first part of the chapter will be concerned with zero

order asymptotics, which is to say, how the expectations

of certain quantities behave (or, alternatively, how

infinite samples behave). Later we shall obtain a first

order asymptotic result: the large sample distribution of

what we shall call the stationary point of IET.

It will be helpful to introduce some notation at this

point. We suppose that f(x) denotes a spherically

symmetric density about x = 0 in k dimensions, that is,

f(x) = ck lg(jxj2), where ck is the normalizing constant
2 k 2

and x ' = x2, and F(x) is the corresponding cumu-
i=l

lative distribution function (cdf). Furthermore, T = X'X

hasthe generalized chi-squared distribution with k degrees

of freedom with density Ik' given in (Al.l), and cdf F.

We shall also speak of the ellipsoidal distributions
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generated from f : if X t, f, then Y = v + AI/ 2x has an

ellipsoidal distribution if A is symmetric and positive

definite. We assume that g has the property that the

necessary moments exist. Hence E(Y) = vi, and the co-

variance of Y, as shown in Appendix 1, is Z = (27ck) Ck+2A.

Two examples we shall refer to are the spherical normal

with density f(x) = cklg(x'x), where ck = (2T) k / 2  and

g(t) = exp(- t/2 ), and the multivariate normal, which is

the corresponding ellipsoidal distribution. (In this

case Z = A). Numerous properties of symmetric and normal

densities are collected in Appendices 1 and 2.

We shall denote the sphere of radius a centered

at 5 by S () =x:(x-5) (x-5) < a2 . If we definea

(3.1) P = f f (x) dx,
S (5)a

and

(3.2) e a() = xf(x)dx,a s (S)
a

then the conditional mean of X is

e (5)

(3.3) a() a ) = E(XX Sa
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When the sample size is large and k 1, a (6) is the

approximate result of one iteration of IET when 6 is the

starting P.

The first problem we shall consider is the following:

under what conditions will one iteration of IET improve

the estimate of the mean of the distribution no matter

4what the starting value is, when k = 1 ?

Theorem 3.1: In the univariate case, when a > 0 and

1 > 0,

F -F(3.4) la (6)!  < 6 iff 0 < c < 2f c

where

Fd =  (F(S+a) + F(&-a)),

5+a

Fc -a F(x)dx
0-a

and

- f(x)dx.
c 2a
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Proof: Observe that

t t
xf(x)dx tF(t) - sF(s) - f F(x)dx

s s

and

t

/ f(x)dx F(t) - F(s).
s

Therefore, putting s = 6-a, t = S+a, we have

6+a
(6+a)F(6+a) - (6-a)F(6-a) - f F(x)dx

IS' S-a
Ia (6 )  = F(6+a) - F(6-a)

which implies

" -Fd
Vi = 6 c d

c

If S > 0, then a (6)1 < S iff 0 < F - Fd < 26fc

Similarly, if S < 0, then lia(()I < -6 iff

0 > F F 2f c . But these results, taken together,

are equivalent to (3.4). R

The proof of this theorem did not rely on the existence

of a density f: we could have replaced f by dF and
S+a c

by (2a) f dF(x). The distribution of F need not be
.-a

symmetric about 0, although we stated Theorem 3.1 that way
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because of our special concern wtih such distributions

in this chapter. Finally, we do not even require that F

have mean 0. So the theorem can be applied to a finite

sample (with empirical distribution function Fn).

Next we will investigate the behavior of pa(a) as

( - 0 while a stays fixed when, again, k = 1. In

essence we wish to answer the question of how, in one

dimension, IET behaves when one iteration is performed and

we are near the true mean.

Theorem 3.2: In the univariate case, if f is continuous

in a neighborhood of x = a, then if F(a) > 1/2,

af(a)
(3.5) Pa(() = F(a) /.6 + 0(6) as 6 - 0.

Furthermore, if f is n-i times differentiable in a neighbor-

hood of a, then L(n) (0) existsand vanishes when n isa

even.

Proof: Since ea (0) = 0, it follows that a(0) = 0. Cbserve
a

that e (0) af(a) + af(-a) = 2af(a) and P (0) = 2(F(a)- 1/2).a a

Hence,

e (0) e (0)Pa(0)a a af(a)Ua(0 = a p2)(0 =F(a)- 1/2
a P-(0)a
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th
which implies (3.5). In general, the n derivatives of

Pa and ea are

(3.6) Pan) (6) f (n1= ) (6+a) - f(n-) (6-a)

and

(3.7) e (6) (1)f(n 2 ) (6+a) - fin 2 ) (6-a)]

+ [(d+a)f (n - l) (6+a) - (6-a)f(n-l) (6-a)).

Since f is symmetric about x = 0, f (x) = (-l)n f (-x).

Hence, (3.6) and (3.7) imply that

F(n) 0 n odd
(3.8) p(n) _ Pa (0) = (nl)

2f (a) n even

and

a nd ( )2 (n - ) f ( n - 2 )  (a )+ 2a f n - )  (a ) n o d d
(3.9) e e- (0) =

L 0 n even.

Le (n) (n) Pa '
Let (n) = Ia (0). Then, since ea PU

(3.10) e(n) n (n-k)
Z kk=0

Now we use an induction argument to prove i(2 n ) 0 0. Of
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course () = 0. Suppose w (0) = (2) .. 2(n- ) 0
st

and consider the (2n+l) instance of (3.10). Then,

(2n) =2n 2(2) n 2n (k) (2n-k)
k=O

Observe that all terms with k odd vanish because of (3.8).

Similarly, for k > 0 and k even, the corresponding

terms vanish by the induction hypothesis. Hence,

e (2n) =(O) (2n). But e( 2n) - 0 by (3.9) and P(O) > 0;

hence (2n) =0.

If we put

af(a)
b(a) F(a) - 1/2

then the preceding theorem asserts that pa (6) = b(a)6 + 0(6),

or that for 6 small, b(a) represents the proportional

reduction in bias achieved by performing one iteration of

IET. It is interesting that b(a) has a simple geometrical

interpretation as the ratio of the density f at the boundary

of [-a, a] to the average density of f in [-a, a],

(3.11) b(a) = 1 f(a)
2a(2(F(a) - 1/2))

It turns out that b(a) is the k=l version of bk(a),
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the k-dimensional bias reducing function that appears in

the next theorem (that is, b(a) = b1 (a)). We define

cklg(a 2 )

(3.12) bk (a) -
2

Fk (a 2 )/Vk (a)

where

k/2__ ak

Vk(a) + 1)

is the volume of a k-dimensional sphere of radius a, given

in (Al.5). The function bk(a) is the ratio of the density

of X on the boundary of Sa(0) to the average density

of X inside S (0). (Of course, Fk(a 2 ) = Pr(X'X < a 2.)

In the k-dimensional case, the arproximate result of one

iteration of IET is not quite given by 'a(6) because it depends not

only on 6 but also on the initial estimate of the covariance

matrix. Nevertheless the behavior of i a(8) expressed in

Theorem 3.3 is relevant to our understanding of IET.

Theorem 3.3: If g is differentiable in a neighborhood

2
of a , then

(3.13) 'a (6) = bk(a)d + 0(8) as 6 - 0.
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Proof;. By (3.2), e ()= f xck g(x'x)dx. We changeBy~ (a()
S a

variables by setting y = x-8 and obtain

(3.14) e a( 8
)  - (y+ )c g(y'y + 2y'8 + 6'8)dy.

a aS a(0)

Expanding ea(6) we find, to first order, that

(3.15) ea (6) = [a ( g(y'y)a]
S (0)

a+ [2f y'cklg '9 (y'y)dy]6 + 0(6)
sa (0)

by using the spherical symmetry of g(y'y). But the first

2
term of (3.15) is just Fk(a )8 and the second term is

I 2M3 5 by (Al.13) and spherical symmetry. Substituting

(Al.19) for M3, we find that

Ck+ 2) ( 2

ea() 27r ck (2fk+2 (a

Furthermore, P ( ) = P a(0) + o(i); hence,

() 1 ck+ 2 ) 2fk+2 (a 2

(3.16) a( =  c k Pa ( 0 )

Using (Al.l) and (Al.5) it is easily verified that (3.16)

is equivalent to (3.13). ,

-- ---- -
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Two useful alternative formulas for bk(a) are given

in (Al.3) and (Al.4) and some numerical values are presented

in Table A2.1 when X % N(O,Ik). In that table we write

p = Fk(a 2) for the probability of lying in S a(0); alterna-
1a

- 1/2tively, a = (Fk (p)) It is interesting to study

bk((Fkl(p))/ 2 ) for fixed p as k increases. For

fixed p, Fk (p) increases with k; therefore, by Lemma A2.1,

bk decreases with k. For k large, in fact, by (A2.14),

1
bk = o(k - /2) as k when p is fixed. To summarize,

for a given p, in high dimensional space, IET will converge

faster than in a low dimensional space. This fact is, at

first glance at least, rather surprising and indeed it depends

on the sample size being sufficiently large, where what

constitutes "large" may itself grow with k.

Later in this chapter we shall prove a generalization

of the preceding theorem! Theorem 3.6, which will imply

that b k is still the bias reduction factor when one computes the

expectation of X, given that it lies in an off center ellipsoid.

It is natural, now that we have studied the zero

order asymptotics as 6 - 0, to undertake the analogous

investigation as 6 - . Two formulations of this problem

are relevant. We can, first of all, let the radius a be

fixed and send 5 -6 , thereby forcing the probability in
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the spheres, P a() to go to 0. Alternatively, we

can fix P a(6) = p; then, as 6 - -, a must also

approach -. Theorem 3.4 deals with the first alternative

while Theorem 3.5 deals with the second. Neither result

is as general as it could be, but both provide some in-

sight into the operation of IET.

Theorem 3.4: Suppose X ' N(O,Ik). Then,

(3.17) lim I.a (6)-di = 0

where d is the point in Sa (6) closest to 0.

In order to prove this result we must make use of a

rather technical lemma, the proof of which will follow

later. Note that d = d 6) and let

(3.18) T (6) = {x : x C S (6) and jxl <;d(6)1 + £}
£ a

and

(3.19) U, ( ) = S (8) - T_ ( ).
- a

We shall also abbreviate S (C) as S.a

Lemma 3.1: Suppose X .. N(O,Ik). Then,

t9
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P(T (6))

(3.20) - 1as 6 E- > 0.P(S5 )

and

(3.21) sup Ix-di j 0 as E + 0 uniformly in 6
x)ET (6)

Theorem 3.4 asserts that the conditional expectation

of X Au N(OIk) given that X E S6  approaches the point

of maximum density in the sphere, namely d, as the S,'s

move out to . The two pieces of information in Lemma 3.1

are that as 6 - , more and more of the probability in S

is actually contained in a small subset, T (6), of SV,

and that every point in T (6) is very close to d when

e is small.

Proof of Theorem 3.4: We may write

f xf(x)dx + / xf(x)dx

(3.22) a( = -((
_P(T 6(i )) + P(U,( ))

P(T () P(S6 )
If we set c = P(U(5))/P(T )) = (i PS ) ()0 . P(0 P(T£()

then by Lemma 3.1, c, - 0 as 6 - It is possible to

rewrite (3.22) as

c

(3.23) E(XIX T,(6)) + -- '-E(XjX £ U (6))a ( 1+ +

. .
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which implies that

(3.24) 'a (6) - E(XIX z T =

c 6
-(E(XIX E U (6)) - E(XIX F T (6))).l+c

Since both E(XIX C U ()) and E(X[X E T (6)) lie in
S6  (a consequence of the convexity of S), it follows

that they can be no farther apart than 2a. Hence (3.24))

implies that

c 6

(3.25) I a(6) - E(XIX e T (5))l < -- (2a) - 0 as S -

a C -1+c

Now E(XIX c T(6)) C T_(6) since T (6) is convex.

Fix n > 0 and choose s > 0 so small that for all 5

sup Ix-dj < n/2, which we can do as a result of Lemma 3.1.

Then it follows that

(3.26) !E(X'X s T (5)) - dl <

Next choose A such that 161 > A implies that

(3.27) Ha(S) - E(XX TA5)) r
a. 2
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which we can do as a result of (3.25). Combining (3.26)

and (3.27) we obtain the result that 161 > A implies

1Ua(d)-d i < n, which is what we desired to prove. B

Proof of Lemma 3.1: Without loss of generality we may

assume that 6 lies on the positive xI axis and that

IS I> 2a. Then we may write d = 6-a, using the convention that

6 (or d) can mean either the vector or its length

(equivalently, its xI component), depending on the

context. Equation (3.21) is geometrically obvious, so

we shall only prove (3.20). Let V(6,£) be the volume of

T (6) and observe that

(3.28) P(TE (5)) > P(T/ 2(M))

k /22) 1 2 6> (2Tr) (-p (d + E/2) V

and

(3.29) P(U (5)) (27)-ki2exp (- (d+ ) Vka ,

where Vk (a), the volume of S5, is given in (A1.5).

It is easy to show that a sphere with radius £,4 centered

at d +:-/2 is contained in T-(3). It then follows that



-32-

(3.30) V(6,E) > Vk(E/ 4 ) o(k

Using (3.28), (3.29), and (3.30) we may now prove (3.20):

3. 2
P(U (6)) exp - ed+ .) ]Vk(a)

0 < 2 k
- exp [- (d+ e/2,2 V( E:/2)

< 3 2 Vk (a)

< exp [-*(d + -~)4vk(/) ) 0 as 6

since d - as 6 -) o. I

The next theorem shows what happens in the one

dimensional case when the Sa(6) 's go Out to infinity

in such a way that the probability they contain goes to

a limit which is non-zero. We shall write (x) and c?(x)

for the N(0,1) density and cdf, respectively.

Theorem 3.5: Suppose X % N(0,1). Then if P a(5) - p

as 5 - for some p such that 0 < p < 1, it follows

that

Proof: Since P - , (5+a) - 1. Hence, ( I-a) I-p,
-1

whl :h implies that i-a (1-p). Of course, a -

Therefore, as 5 -
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S xp (x) dx
ea() ¢ -1 lp

(3.32) a( e6) = ( I )

But since / xW(x)dx = 0(c), we conclude that
c

We may approximate the limiting conditional expectation

of X in (3.31) in a simple fashion. In Woodroofe [13, p. 97]

it is shown that if x > 0.

(3.33) 1 - (Dx) < w(x) < (1 + x - 2 Hl - 4(x)).

By setting x = %-(1-p) and applying (3.33) it is easy

to derive that if p < 1/2,

(3.34) 0 < ( - 2 - -l(l-p) <  -1-p (l-p)

-i -I -

Hence, as p 0, p -1 (l-p)) - -(l-p) - 0. Some

numerical results are exhibited in Table 3.1. Observe

that when p = 0.8, one iteration of IET using the worst

possible starting value will still lead to an estimate

with expectation 0.35. Of course this comment is based

on the assumption that the observations are from a uni-

variate normal distribution.
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The rest of this chapter is devoted to an analysis

of the first order asymptotics of IET; more particularly,

we shall be interested in obtaining the asymptot-c distribu-

tion of what we shall call the stationary point of this algor-

ithm. Let (b,v,B) be the parameter specifying the ellip-

soid.

(3.35) E (W) = {y (y-v) 'B (y-v) < b 2

where b is a scalar, v is a k-vector, and B is a symmetric

positive definite k x k matrix with trB = k. We can represent

the operation of IET as a sequence 1;(m)} with Em= ( )

and t(r+l) = T n(m) ) where the operator Tn  is a function

of the sample (of size n) and is defined by

7 (M+1) - n(3.36) [mpl) n y dH,• [np] , n
E
m

f (y (m l))(y-, (m+l)) 'dH ii
, n :

(3.37) B -(m<m =)
k tr, (y-v )(y-'(m+l))dHn

Cm

and b(m~l) is the smallest value of b for which

(3.38) np dHi
n n n, 1Em
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where Hn  is the empirical cdf of Y = A + A/x, which

has an ellipsoidal distribution with mean p4 and

covariance Y 2JTck ck+ 2A. We define the "true p" to

be = (b0 'v0 'B0 ) where = 1, B0 = kZ/(tr Z), and

b is determined implicitly by Pr (Y s E (0)) = p.

Definition 3.1: A local stationary point is a sequence

of random points n = (b nV n'B n) such that

-1/2
n -0= Op(n and satisfying

(3.39) n = Tn(n ) + o p(n
- /2)

We shall say that there is an essentially unique local

stationary point if whenever n and n are local

stationary points, Cn - n = o (n-/2)p

Because of the invariance of IET it will only be

necessary to consider the special case where the distri-

bution is spherically symmetric (i.e. u = 0 and A = 1k).

it will be convenient to have special notation available

or this situation. Let e = (X, ,e) be the parameter

specifying the ellipsoid

(3.40) E() = x : (x-) ' (Ik+E)-l (x-) < (ak')2k !
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where X is a scalar, 6 is a k-vector, and £ is a

symmetric k x k matrix with tr e = 0. Here the "true 9"

2 -1
is just a0 = (0,0,0) and a0 = Fkl(p). In this case,

the random variable in question is X and f, F, and Fn

are respectively its density, cdf, and empirical cdf.

Our next theorem, a generalization of Theorem 3.3,

will play a crucial role in the derivation of the

asymptotic distribution of what will turn out to be the

essentially unique local stationary point. We define

k k k

(3.41) el 2= X 2 + 2
[=i l i=l j=l 1

Theorem 3.6: If g is differentiable in a neighborhood of
2

a0 , then as 181 - 0,

2 2

(3.42) f f(x)dx = Fk(a 0 ) + 2a fk(a2)X + O(L9a)
E(a)k 0k0

ck~2Ck+2,2 (a
(3.43) xf(x)dx = 2c ) (2f 0) +

and (9)
and
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Ck+2, a2)I
(3.44) f xx'f(x)dx ( -2k)Fk+2(a2)1

E(e)
E(8+2, k2+

+ (t k. ) (2aofk+2 (a0 ) Ik) X

+ k+42 ) 2  (a2))E + o(IeI))(21, fk+4 0
(2r ) ck

We shall find it useful to derive a lemma before embarking

upon the proof of this result. Set a = a0 + X and

ksuppose that h is a vector valued function defined on R

We shall write Dh(x) for the derivative matrix of h

Lemma 3.2: If h is differentiable, as o(,a) I 0,

(3.45) f h(x) f(x)dx = A + B + C + oCi (_,E) )
E(9)

where

(3.46) A = f h(x)ck g(x'x)dx
x' x<a

2

(3.47) B = [Dh(x)](£x/2 + 6)ck g(x'x)dx
2

x x<a

and

(3.43 C = h(x)(x':.x + 2x'3)c-ig'Cx'x)dx.
2x' x<a
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Proof of Lemma 3.2: We change variables by setting

y = (Ik + C)- /2(x- fl, where (Ik + E)- /2 is chosen

to be symmetric. Then, the range of integration in (3.45)

is the sphere (y : y'y < a2}. Since tr (E) = 0, the

Jacobian determinant is

(3.49) + oleo

Furthermore,

(3.50) x = k + E/2)y + 6 + o(JlE)

and

(3.51) x'x y'y + y' y + 2y'6 + o(1 (6, ))

Now, by recalling that f(x) = ck g(x'x); substituting

(3.49), (3.50), and (3.51) in the left hand side of (3.45);

expanding h and g about y and y'y, respectively;

and keeping only those terms which are zero or first order

in (5,£), we obtain the lemma. I

Proof of Theorem 3.6: To derive (3.42), (3.43) and (3.44)

we simply apply Lemma 3.2 with h(x) set equal to 1, x,

and xi Ktrespectively. The final step is to expand the
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results thereby obtained (as functions of a) around a0.

In all cases we shall make heavy use of spherical symmetry

and Lemma Al.l. For convenience we shall write S for

the region of integration {x : x'x < a 2. When h = 1,

we find that A = Fk(a ) and since Dh = 0, B = 0.

Observe that the formula for C may be simplified to

c X2 C-i 1
C ( X1C k g' (x'x)) (E:ii)

S

which implies that C = 0 since tr (s) = 0.

Equation (3.42) then follows from

f f(x)dx = Fk((a0+X)2 ) + o( , I).
E(a)

When h(x) = x, it is obvious that A = 0. Since Dh(x) = k '

we obtain immediately that B = Fk(a2 ). The equation for C

is

C = f(xx':x + 2xx'6)cklg' (x'x)dx,
! S

but, by spherical symmetry, the integral of xx'-zxck g' (x'x)

vanishes and the integral of the remaining term reduces

to

(3.52) C = [f x2 c-1 g, (x'x)dxl (2 ).
S
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As a result of (Al.13) and (Al.19), we may write (3.52) as

C (2- 2 (2fk(a)) - Fk(a 2 )] .

Therefore, adding A, B, and C we find

Ck+2.2

f xf(x)dx = (_L 2 k+2 (a 2 ))6 +
E (O ) " "c k

from which equation (3.43) may be derived by expanding

around a0. Finally we shall obtain (3.44) by considering

two cases: h(x) = xix j for i < j and for i = j.

First, when i < j, it is easy to see that A = 0. We

find that when we drop terms that vanish because of

spherical symmetry and the form of Dh (Dh has xj as

•th th
its i coordinate and xi as its j coordinate, with

the other coordinates equal to 0),

(3.53) B = f(i/2)(x.£i + x2 i -
S . + E c k  g(x'x)dx .

s j 131i

By the symmetry of and (Al.8) and (Al.17), equation (3.53)

leads to

2)
(3.54) = (27c ) c F (a 2 .

k k+2 k+2 j

Again keeping only nonvanishing terms, we find
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X2X 2 E. + E i)cklg (x'x)dx,C - i j (i3 ji

S

which simplifies to

2
c Fkk+4 2) 2 (a2)

(3.55) C 2[( 2 )fk+4 (a 2 ) -
2 rck 2 ](2Tr)k + 2 ck

upon the application of (A1.16) and (AI.20). But then,

using (3.54) and (3.55) we derive

(3.56) f xixjf(x)dx = k + 4 )( (a )) . for i < j.
E(O) 1 (2r) 2ck k

2
Taking the next case, i j, or equivalently h(x) =x ,

we find

ck+2  2
A (k+2)F (a)

2-c Fk+2

and

ck+ 2 ) 2

2 TkCk k+2 a ii

by making use of (Al.8) and (A1.17). Dropping terms that

vanish we may write

2 2 1
C = i X ,z)ck g'(x'x)dx.s
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Then, using M4, defined in (Al.20),. and equations (A1.15)

and (Al.16),

C = ( 3 M4 )E i i + M4 ( )

But since tr c = 0, it follows that E = - .; hence,

cc

C = 2((2k+4 )f a 2) _ 2 Fk2
( 2 TCk ) 2ck k+4 k 2 ]

Therefore, summing A, B, and C we find

2__ 2 ck+4 2
•Ck+ 2 . (a 2 ) C+

(3.57) f x f(x)dx = (2)F a +( 2 )(2f (a ))E"

E(e) k (27) Ck c k

Combining (3.56) and(3.57) we obtain

, Ck+ 2  (2 )
k  Ck+ 4 2

xx'f(x)dx = (2)F (a ) )(2k+4(a2))E
E(9) k (2Tr) ck

from which (3.44) follows upon expanding around a0

It is easy to see that as a result of (3.42) and

(3.43) and the formula for bk(a) given in (Al.4),

(3.58) E(XiX £ E(?)) = bk (a 0 ) + o C9

Using (3.42) and (3.44), we obtain in a similar way that

I.4
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2
Ck+ 2 ,Fka

2 )
E((X-S) (X-6)'Ix E ())= 2 (a') I

2Trck kF+ aO91

which we may rewrite as

(3.59) E[(X-6) (X-6) 'IX E E(e)] = c(k,P)2 k+2  O

c2kTp) 2 k k + 00191)

-1Ck+2Ikr

where c(k,p) = F+2 (F - I p))/p. (Note that I is
the covariance matrix of X.) It is a simple matter to

extend (3.58) and (3.59) to their ellipsoidal generalizations:

(3.60) E[YIY F E ( )] = + bk(a0) (V- W) + o(I - 01)

and

(3.61) E[(Y-v) (Y-\)'IY E E(p)] = c(k,p)Z + O(jp- q01).

At the end of Appendix I it is shown that c(k,p)Z is the

covariance of the truncated ellipsoidal distribution, so

(3.61) reassures us that when T is near 0 the expected

value of 7 generated by IET will be close to the true

truncated covariance. According to (3.60), the bias

reduction factor plays the same role in the ellipsoidal

case that it played in Theorems 3.2 and 3.3, which is

another reassuring result. It is straightforward to write
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down the first order terms in the expansion of the left

hand side of (3.61). There is a term in b-b0  and a term

in B-B0 ; the corresponding coefficients play the same

sort of role that bk(aO) does in the location case in

telling us how one iteration of IET will reduce the bias

in the covariance estimate, on the average.

Our next result concerns the uniformity of convergence

of linear functionals of the empirical distribution function

Fn  on all ellipsoids E(9) such that 9 is sufficiently

close to 0. Note that JBI, for a matrix B = (b ij), will
2 1/2denote (Z b) Recall that e = (X,6,s) where

tr (E) = 0.

Lemma 3.3 - (Uniformity): Suppose F is a cdf on Rk

with a bounded density and Fn  is the corresponding

empirical cdf. Let

(3.62) V < Kn_ /2 +b,(3.62) Vn = * _

and

(3.63) ( h(x) (dFn-dF) - f h(x)(dF-dF)

3.3 Dn( n( E(0) "~7)

Then tere exists a b 0 such that for an'y K- 0 and an-;

bounded scalar, vectcr, or matrix valued h
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(3.64) sup ID o (n - /2
9 V n P

n

Proof: It will suffice to show (3.64) for scalar valued h.

First we cover Vn with balls of radius p = n /2-a

m

so that Vn i C S ( i ), where S ( i) = e : 1e-oi) < p}.

We will need m balls where

m K nl /2-+b)k n Klk (a+b) .
Sn-1/2 - a

and k is the dimension of the e space, that is

k =1 + k + k(k+l)/2 -1 =k(k+3)/2

If 8 E S (), then

E(9)AE(i C R(eio)

where R(e , ) is a spherical shell in x-space with thick-

ness bounded by K 2 ,. Hence, if 5 :S (£),

<_ !n(x)IdFn + fh(x)dF.
n n) ,
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But ih(x) !dF < K3 f dF < K 4 andR ( % i , P )R ( g i ,0 )

f h(x) dF n S K3 f dF < K P +
R(S. , ) R(3.i,)

where Z is a random variable with mean 0 and variance 1.

~Hence,

H n e s u p ID n ( ) D ( S . ) < K 6 ( p + ( p / n ) 1 / 2 1 Z I ) .0 ESp (e i )n

-l 2
Since Pr (IZI >_ - ) < , by Chebyshev's inequality we

may conclude that

(3.65) Pr ( sup iDn(5) _ Dn (8i): > K6 (o+(o/n)1/2 -1 <
eES (9 i )

Since Dn (8) has expectation 0,
1

Var D 1n(i) n E h (x)dF <Kn lI Hence,
-i1 - 1/2 +b = - 3/2+

Var Dn(i) < K8n n /2 K n for

i = I.... m. But then, by Chebychev's inequalitv,

1 1

(3.66) Pr (D > Kn>-1 / 2 - a < - /2 + 2a + b

where a > 0. We are interested in showing that for some

a > 0,
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(3.67) Pr (sup Dn(9)I > Kn /2-a 0(1).
n

Now the left hand side of (3.67) may be bounded by

m Kn- /2 -a) ,
7 Pr ( sup IDn (9)1 > . In addition

i::Q 1
il 9ES (9 i

(3.68) Pr ( sup ID n()l > Kn / 2  ) < Pli + P2i9CS (9 i)

where P1 i is the left hand side of (3.66) and

(3.69) P2i = Pr ( sup IDn(9) - Dn(gi)I > Kn 2-a
2i~ e~ 0 (5 .)

But if we choose n such that

i/2n1-/2 -i) -1/2 - aK 6(' + 0 n < Kn

(a/ 2)- (1/ 4) t e q a i n ( . 5
i.e. if we take n K then equation (3.65)

implies

a- (1/2)
(3.70) P 2i <- K11n

But now, combining (3.65), (3.66), and (3.70) we obtain

n3.71' (Pi + k (a+b) -(i/2)+b2a a-(1/2),
i;1 P2.) 12n n-
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* -I
If we take a b = (4(k + 2)) , then the right hand side

of (3.71) goes to 0 as n - ', which implies (3.67),

which is equivalent to (3.64), the desired result.

It is interesting to note that the a and b we needed

in the preceding proof were quite small, that is

1
a = b = 2 (k (k+3))

We are now ready to derive the asymptotic distribution

of the local stationary point n when Y has an ellipsoidal

density.

Theorem 3.7: There is an essentially unique local stationary

point on (b , n' Bn )  As 'I n n 0(b Z B -n As n) is

asymptotically normal. In particular,

1/2 ______ _____(3.72) L(n (V n-W)) N(0 c(k,p) 2)n p(l-bk~a0 ) )

Proof: It is enough to prove the theorem in the spherically

symmetric case where the true density is f(x). The invariance

o lET leads to the more general result. Note that in tne

szherically symmetric situation we shall s-uc; In this oroc = ,

(b I B ) is simply related to

n Fn n' n n) by 0 = (a o + n) ,n = and

hen we require E
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Then, as a result of (3.39) and the uniformity lemma,

(Lemma 3.3),

(3.73) n = p-1 xdFn + p-1 f xdF - p-1 f xdF o (n-/2)
nE(0) n p)

n

If we write 1(E) for the indicator function of the event E,

and let

(3.74) W1 = n- 1Xi I (Xi c E(O)) = f xdFn
E(O)

then upon making use of equation (3.43) of Theorem 3.6

and (Al.4) we find that (3.73) may be rewritten as

n= p(l bk(a + 1

Now, equation (3.75) gives an explicit formula for 6n '

We may apply the central limit theorem to W1  and obtain,

as a consequence, the asymptotic distribution of nn

Because of (Al.8) and (Al.17)

nli'2w Ck+2 ,

(3.76) L(n 1/ N0, W2 k k+2 (a0)I) .

Using the definition of c(k,p) in (Al.23), and the

transformation Y = + A1 / 2 X, (3.76) immediately leads
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to (3.72). In a similar fashion we may obtain explicit

formulas for n and sn' analogous to (3.75), by making

use of uniformity and (3.42) and (3.44) together with

(3.39). So if we let W2 = n 1 Zl(Xi E(O)), then

(3.77) n = - 2 + (n /2).
n 2 afk (a2)

Since L(n 1 /2(W 2 - p)) -- N(0, p(l-p)), it follows that

1/2 ________
L(n ) - N(0, p(l-p)

n ( 2 a fk (a2)) 2

We can also obtain an explicit formula for £ as a functionn

D 1
(3.78) Ik + n = D + p(n-/2)k-tr CD)

where

D W3 + (27C k)-i C2a (a0))ik' n= Ok+2 (20k0 n

2 -1 2+ ((2)Ck) C k4( 2 f* (a 2)

By computing tr(D), which would depend on n and W

but not on n we could use (3.78) to derive an explicit
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formula for -n. Again, n 1/2-n will have an asymptotically

normal distribution but with a very messy formula for its

covariance. (In Appendix 1, Lemma A1.1 provides the

formulas which would be needed to actually compute that

covariance matrix.) From what we have shown so far, it

follows that 93 itself, and hence $ , is asymptotically

normal. We have seen that if n is a local stationary

nn

But since those three equations themselves yield an explicit

formula for 9nsuch that the corresponding rpn satisfies

(3.39), we have proved the theorem.I

Wie conjecture that if IET is allowed to iterate until

it reaches a stopping point, that is, until for some in.,

(in0) -(in 0)
=T n~ ) then first, there will be such an m 0

(with probability approaching one) and second, this stopping point

will be in a 0 p(n /2) neighborhood of the local stationary

point whose asymptotic distribution we have just derived.

IfI our conjecture is true, then we have just obtained the

asymptotic distribution of the stopping point of IET. Were

we to prove that IET does halt with probability approaching i, it would

then be enough to show that there can be no stationary

point scthat - is bigger in order oc

magnitude than o P(n-/ 2) since a stopping point is
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certainly a stationary point.

It is interesting to note that if Y N(u,Z) then

the result in Theorem 3.7 becomes

1/1L(nl (v-u) N(O, a
sn (-b k (a 0)d

since c(k,p) =1 b bk(aO0 for this distribution.
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Chapter 4

Monte Carlo Analysis

In this chapter we will be concerned with the question

of how the presence of outliers and/or a small (infrequent)

subpopulation influences the performance of IET when it

is used to estimate the mean of the larger (more common)

population present in the sample. More specifically,

we shall, in each case considered here, generate a random

sample composed of three kinds of data:

nI  N(pI , XI ) observations

n2  N(L2 , Z2) observations

and

2
n3  N(l, Ik  observations

where n2 , n3 << nI and 2 >> 1. Then we shall use IET,

as defined in Chapter 1 to estimate

Given this setup, how shall we study the performance

of IET? There are a considerable number of parameters

which must be specified, some involving the algorithm

and the others involving the simulated data, before the

above process is well defined. To specify IET, one must

select starting values for the mean and covariance as well
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as a sequence of proportions or p's, while, on the other

hand, before generating the data one must choose
2

111 u2' z 1 Z2' 2 , nl, n2, n3 ' and, implicitly, the

dimensionality k, of the problem. Presumably our study

should consist of setting these parameters at a sufficiently

large number of values to encompass the range of possibili-

ties likely to be encountered in practice. Unfortunately,

there are too many parameters for such a comprehensive

investigation to be feasible. Therefore we shall content

ourselves with the examination of a relatively small number

of cases, in the hope that we shall still get a feeling

for the important characteristics of the behavior of IET.

To begin our study we now assume, without loss of

generality, that ul = 0 and that 112 always lies on the
positive x axis. Furthermore we set 1 = X = I and

axi Futemr 1 ~2 k

always take the starting values for IET to be the observed

mean and covariance of the entire sample, which consists of

n = nI + n2 + n3 observations. Then, to proceed we need

only choose a single positive number for 2 ', the dimen-
2an

sionality k, 2 , nI , n2 . n3 and the sequence of p's.

First we consider an example. Set k = 3, -2

nI = 100, n2 = 20, n3 = 0 and let the sequence of

proportions be 0.5, 0.6, 0.7. The overall mean of the

random sample generated according to these specifications
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is (0.88, 0.05, -0.06)'. The three successive estimates

of u, are

(0.06, 0.06, -0.16)

(-0.07, 0.05, -0.08)1

(-0.06, 0.06, -0.07)'.

Incidentally, the final correlation matrix is

1 -0.05 0.04

0.09')

Though the general behavior of IET in this example is

typical of its behavior in many other examples with similar

parameter settings, it would be nice, nevertheless, to have

some quantitative information about its performance. The

rest of this chapter is devoted to the presentation and

interpretation of this kind of information.

Our procedure is as follows. Generate a random

sample according to the appropriate parameters. Apply

IET, using the sequence of proportions Pll ... Ip to

obtain the sequence of estimates ()(m)

where is the overall mean, X. Compute and save
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i1
e1 ') = k I I where the superscript 1 indicates that

this is the first Monte Carlo trial. Repeat this process

for each of s samples with the same parameter settings.

Report the means and standard errors of the eJ)'s in1

the form

e 0  e em

Of course,

- -1 s 1 ,I
e. = s e. ,

j=l

and

A2 =s-12 = s1 - 2- s (e (es) e
e. e j=l 1

Now suppose a sample has no contamination,

i.e. n2 = n3 = 0. Then N(0,n-1 Ik). Hence
- 1

n- /2,, . Now let

(4.1) mk = (2/k) /2 "((k4i)/2)k 7 (k/2)

Then a simple calculation reveals that

4,
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E(x(k)) = k mk d Var(x(k)) = k(l-m2). It then

follows that, in this case,

(4.2) E(e 0) = mkn- /2

and

(4.3) Var(e0) = (l-m2)n - I

since e0 = k -  X  (nk) /2 X (k)

We list some numerical values for mk and l-m2

in Table 4.1. Incidentally, as k - -, mk  1 and

1-m2 , (2k)- . These last two facts may be derived byk 1
observing that L(k / 2 k- X 2 -1)) - N(0,2) as k -(k)

and applying the -method.

The point of the preceding paragraph was to provide
a benchmark for determining when e. is big. The best

one can hope to do is to have an average error e.
i

approximately equal to mkn1 if there are n1 observa-

tions of the major population (as long as the minor

population isn't too close to the major one). For

example, if n1 = 100 and k = 2, then

I/2-
mkn- =0.09. Similarly we will expect the estimate

of the standard error a- to be approximately
e.1



-58-

41/2 3
(0.215 x )/ 5 x 10 if s = 100 and if Pi

is such that about 100 observations were used in computing

the ith estimate 1(i) (and if not too many outliers

are included).

Now we are ready to report some results. We shall

describe and interpret 5 simulations, to be referred to

as simulations A, B, C, D, E, whose results are recorded

in Tables 4.2-4.6 at the end of this paper. In simulations

A, B, and C we will set k = 2, n1 = 100, n2 = 10, n 3 = 0,

and s = 100 (= number of samples). These three simulations

differ only in regard to the sequence of proportions used.

In A, P1 = P2 = P 3 = p 4 
= 0.5; in B, P1 = 0.5, P 2 = 0.6,

P 3 = 0.7, P4 = 0.8; in C, P1 
= P2 = P 3 = P4 = 0.8.

Simulations A, B, and C are intended to illustrate

the effect (on IET estimates) of the position of the

subpopulation when there are no outliers (n3 = 0). Un-

fortunately, the standard errors, in parentheses, are

often comparable in size to the differences between

various ei's. (To reduce the standard errors to about

0.001 would require at least 25 times the number of samples

used here: 2500 samples of 110 observations!) Nevertheless

we may derive some general conclusions of interest.

In simulation A, the presence of a subpopulation

causes one to do somewhat worse than one would otherwise
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do. Simulations B and C suggest that the estimation problem

is hardest when the subpopulation is 1 or 2 standard

deviations away. The use of an increasing sequence of

proportions seems to slow down convergence (as compared

to using the biggest P repeatedly), but not to affect

e4 very much.

In simulation D we study the effects of having

both outliers and a small subpopulation in the sample.

To simplify the presentation, each run in Table 4.5

will be identified by a parameter vector:

( 21 a2 P ' P2 P3' P4 ). For all of the runs, n, 100,

n2 = n = 10, s = 100, and k = 2.

The final average error, e4, in runs 2 through 7

is close to 0.1 and is based on 0.8(120) = 96 observations.

So we are doing about as well as we could hope to do. The

presence of outliers, whether with variance 100 or 400,

has little effect; ultimately IET screens out most of

these points. Similarly, the final error is not influenced

much by where, exactly, the subpopulation is (as long as

it is at least 3 standard deviations away) nor by whether

or not an increasing sequence of proportions is used. In

practice, naturally, we do not know that the right proportion

is, for example, 0.8. This is one reason why an increasing

sequence might be useful - one imagines gradually raising P
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until IET begins wandering off, a sign that P has become

too big.

Our last simulation, simulation E in Table 4.6, involves

four dimensional data. Each run is again identified by

a parameter vector (W2 , n2 ' n3 ), but in all cases

n = 100, a2 = 400 if n3 > 0, and the sequence of P's

is 0.5, 0.6, 0.7, 0.8. The results here are similar to

those that have gone before, but note that the final

average error in run #4 is 0.147, a rather large value,

presumably a result of the fact that it is based on

0.8(130) = 104 observations, some of which must, of

necessity, be outliers or belong to the subpopulation.

These Monte Carlo results, though they are neither

terribly comprehensive nor terribly accurate (in the sense

of having small standard errors) do reassure us that IET

behaves basically in the way that intuition would expect

it to. We have found that IET is insensitive to outliers

and small subpopulations that are sufficiently far away,

and that it does hone in on the major cluster we are

seeking. These results are not directly related to the

theoretical result in Chapter 3 concerning the distribution

of the stationary point, since we did not let IET iterate

to a limit but rather had it iterate a predecided number

of times. It would be interesting, however, to carry out
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another Monte Carlo study in order to get an idea of what,

on the one hand, the small sample distribution of the

stationary point looks like for spherically symmetric ob-

servations and how, on the other, it depends on the presence

of various kinds of contamination.

The reader may wonder why we chose to report "absolute"

errors rather than squared errors. The reason is that when

we began doing simulations, we found that rather large

(j)values of e.i would occur with rather surprising fre-

quency. We were afraid that these occasional large values,

if squared, would have an undue amount of influence. Re-

porting absolute errors was a way of downweighting that

influence.
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Chapter 5 - Scale Estimation

As we pointed out in chapter 1, the estimate of

covariance yielded by IET, the final 7, is biased towards

0. It turns out, in fact, that 7 is an estimate of c7

where c is an unknown constant between 0 and 1. In

essence, then, IET provides an estimate of both the shape

(the relative dimensions of the axes) and the orientation

but not of the scale of the ellipsoid corresponding to 7.

It is for this reason that we devote this chapter to scale

estimation. First we shall describe the basic device with

which we intend to obtain an unbiased estimate of 7. Then

we shall discuss some properties of this method and

investigate its efficiency. In addition, a few alternative

scale estimators will be considered and compared.

Let us suppose that the conjecture at the end of

chapter 3 is correct: namely, that the stopping point of

IET is guaranteed to be within 0 (n- /2) of the stationary

point whose distribution we have derived. Then it follows

that the limiting Z produced by IET will, as n ,

converge to the population covariance of the truncated

ellipsoidal distribution given in equation (Al.22),

c~~p7,whrec~~p =2 2 2 -1c(k..p) where c(kp) = Fk+2 (a )/Fk(a 2 ) and a = F. (p).

It would then be plausible to obtain an estimate of 7 by
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dividing V by c(k,p)

(5.1) =c(k,p) 7

CThe "U" in U is supposed to indicate that it is

an asymptotically unbiased estimate.)

The parameter p, which appears in c~k,p) , represents

the proportion of points, from the cluster we have converged

to included in successive IET estimates, and not the

proportion of points from the entire sample, which was the

meaning of p in Chapter 2. In Chapter 3, the two

proportions coincided because there was only one cluster,

but typically in our applications there will always be

several clusters. So it- is necessary to estimate p in

order to compute 7U*

one might object that if it is necessary to "know"

approximately how many observations are in the cluster

before one can scale up Ito get an unbiased estimate,

then there is little point to this estimation procedure,

for one could simply use all of the points thought to

belong to the cluster and thereby obtain an unbiased

estimate directly. Though there is some justice to this

criticism, it must be remarked that the latter estimate

would surely be much less robust, as the observations
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with the largest influence on it are precisely those

points about whose correct classification we are least

certain. Earlier we suggested one way to approximate

the number of observations in a cluster: after reaching

a stopping point, gradually increase the number of points

included in the ellipsoid until IET begins to move away.

Here the basic idep. is to base 7only on points whose

membership in the cluster is reasonably certain; then,

obtain the total number of points in the cluster by

throwing in points which are likely to belong but about

whose classification we nevertheless entertain some doubt.

Another possibility, which really embodies the same idea

is to plot a histogram of the D 2,S. If we are lucky, there

will be a relatively clean cutoff as there is in Figure 5.1.

Unfortunately such cutoffs are rather uncommon.

One consolation is that it is easy to compute the

bias introduced by using the wrong p in the equation for

7.More precisely, if one uses p' instead of p, then

UU

c(k,o')/c(k,:D). Indeed, for many ellipsoidal distributions

of interest, c(k,p) is increasing in p (in particular

for the normal distribution: see Lemma A2.1 and equation

(A2.9)). Hence if one felt that p lay in a certain

interval, then c(k,p) would lie in a corresponding
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interval and one could study the variation in U with p

Later in this chapter we will introduce an alternative

estimator, called v3 , which does not require an estimate

of p. Unfortunately we shall find that it is much less

efficient than a close relative of ZU called vl' at

least when the data are normally distributed.

But before going on to develop our ideas further,

perhaps it will be helpful to examine some numerical values

of c(k,p) (for the normal case), which may be found in

Table 5.1. When k = 1 and we include 25% of the ob-

servations, 2 is only 3.3% of j2, on the average, but

if k = 7 and 25% of the data is included, Z is 42.5%

of what it should be, on the average. Further values of

c(k,p) may be obtained from Table A2.1, after making use

of the result in (A2.9), that c(k,p) = I - bk((Fk1 (p))1 /2)

Note that (A2.9) is not true for all ellipsoidal families;

it does hold, however, for the normal one. It is a

remarkable coincidence that the bias reducing factor in

chapter 3, bk (a), is related in this way to the covariance

of the truncated normal.

Lemma A2.2 implies that

(5.2) c(k,o) Z 1 - (2/k) 1/2 - 1i(P)) for large k
p
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and

(5.3) c(k,p) F((k/ 2 )+l)
2/k p2/k for small p

(5.3)c(ors(km2)a+

Hence, as k - , c(k,p) - 1 as long as p > 0. Further-

more, c(l,p) = O(p 2 ), c(2,p) = O(p), and c(7,p) = O(p 2 / 7)

as p - 0, which is to say that c(k,p) 0 as p - 0

more and more slowly as k increases. This fact accounts

for the results in the above discussion when p = 0.25.

We would like to investigate the efficiency of the

estimator 7U" The most satisfying approach to this

question would be to define a loss function, L(Z,Zu), and

compute its expected value as n - when the data belongs

to some family of ellipsoidal distributions. Then one

would compare the asymptotic risk to the corresponding

value for the optimal procedure. Unfortunately this

program is a difficult one to carry out. Therefore, we

shall make a variety of simplifying assumptions so as to

make the problem more tractable. Later, we will return

to comment upon how much we have lost in making these

assumptions.

Henceforth we shall assume that there are n independent

observations: X1 ,-.,Xn N(O,vB), where B is a known

k < k matrix such that B = 1. We shall be interested
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in estimating v, which we shall sometimes refer to as the

scale of the distribution. Note that in this formulation

there is no contamination and, as a result, no ambiguity

associated with "p" It is convenient to introduce some

further notation at this point. Let Z. X XBX and

note that Zi  vx 2k); then define J l(z < t2 ), where

I(E) for an event E is the indicator function of that

event, and observe that Ji is a Bernoulli random variable

with parameter p = Fk(t 2/v). (As before, a2 = Fkl(p))

We will often refer to the statistics J = n-I ziJ

Z = n- iiZi, and Z = n-i It will be helpful to

write p = J, since J is an estimate of p, and2= -k1l -- 1 X

a 2 F (p). Finally we introduce S = (nj)- lJiX iX

Now we may present our first estimator of scale, vl:

(5.4) v JZ/jkc(k,p)

The first natural question to ask is: why is this a

plausible estimate of v? The numerator of (5.4) is

essentially v multiplied by the sample mean of np
2 2

observations of a X(k) truncated at a On the other
2

hand, the denominator is the expectation of a X(k)

-2truncated at a . This latter observation follows from
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(Al.7), (Al.17), (A2.3) and (Al.23). Of course we would
2 2

prefer to use the expectation of X(k) truncated at a

but since a2 = t 2/v depends on v, we use the estimate

2~
a instead. Nevertheless, v1 is a consistent estimator

of v, a fact which can easily be shown by applying the

weak law of large numbers to J and JZ- and using the

continuity of Fk and bk.

Since ZU is computed by truncating at a random

point and we are interested in studying simple estimators

that are similar to it, one might well ask why we truncated

at a fixed point in computing vI. Indeed, we next intro-

duce vI , an estimator which is identical to v1  except

that the truncation point is now random and such that

exactly [np] observations are small enough to be included.

It will turn out however (see Theorem 5.6) that vI and v

are asymptotically equivalent; as a result we can study

whichever one is more convenient and that one is vI .

Before giving the formula for vl, it will be convenient

to set J' = l(Zi < Z[ ) Then,

Si- ([np])

J, wr/j7 - ____iV, kc(k..p) [nplkc(k,p)

Formula (5.5) is simply (5.4) with Ji replaced by Ji

- ' '- ., L >L - ._
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(with the change that since p is now "fixed" by the

statistician, a2 = Fk (p) is now known). The duality

associated with either fixing t to get vI , or

fixing p to get v1  appears to be very general. For

example, the "t-fixed" estimators v2 ' v 3 1 v 4 to be

studied shortly all have "p-fixed" counterparts

v2, v3, v4. We believe that the proof of Theorem 5.6,

which asserts the asymptotic equivalence of vI and v

as well as of v2 and v2, will provide some insight into

this phenomenon. However, we conjecture that there is a

theorem, or perhaps a metatheorem, which is yet to be

formulated precisely, that would make clear the general

nature of this duality. Such a theorem, we believe,

would for example obviate the need for working with order

statistics and their asymptotic distributions in many cases,

as in the derivation of the asymptotic distribution of the

median or the trimmed mean.

By now the reader must be wondering why we are so

interested in vI and vI  Let S' (n')- _J x-x. and
• '~~ = I n

observe that another formula for v1  is

_, k- 1 tr (S'B- )
V 1  c(k,p)

Now suppose that we were to regard j and
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Z/I~Il/k (obtained from IET) as "correct". Then, we

could subtract off w from each of the n observations,

so that their population mean would be zero, and set

B = 7/I
I/k It would follow that, since S' = 7,

-1 - 1/ k  B t t e
we can write v= c(k,p) But then

vB =

Essentially we have factored Z U into two parts and have

chosen to study the variability of only the first, or

scale, part.

Before going on to compute the asymptotic distribution

of Vl, we shall introduce several alternative scale

estimators. It is appropriate to consider first the MLE

of v based on all of the data (i.e. Xl,...,X ), whichn

we shall call v0. Using the fact that the log-likelihood

of one observation is Z(v) = C - (k/2)log v - (2v)-lx'B -x,

a simple calculation shows that the Fisher information

2
associated with v0 is 10 (v) k/2v 2 . It follows that

1/2
(5.6) L(n (v 0-v)) - N(0, V0) as n -

where
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(5.7) V0 = 2v 2/k.

The formula for 10 (v) is quite reasonable as it asserts

that the information in k 1-dimensional observations is

the same as that in one k-dimensional observation.

The next estimator, v2 ' we will refer to as a

"Bernoulli-type" estimator because it only depends on

the Ji s:

(5.8) = t 2/F 1

Actually, v 2 is a maximum likelihood estimator, as we shall

see later. The "p-fixed" version of v 2  is

(5.9) v2  = Z ([np )/F k (p).

We discussed earlier how in any application of IET,

we would not know the proportion of points, p, from a given

cluster included in the final ellipsoid. The next estimator,

v 3 offers the possibility of surmounting this problem in a

formal way (as opposed to the ad-hoc ways we mentioned

before). We define v3  to be the MLE of v using the

truncated normal density, which is
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k /2 2 11 -1= (2Tv) /2F (t/v))-lexp (- 2-x B- x)
S t2v

(5.10) Pt(x;v) for x'B x <

L= 0 otherwise

based of course on the M observations X such that

Ji = 1. This estimator does not use any information con-

cerning how many observations had J. = 0. Of course,

v3  is the MLE of v based on the m smallest Z.'S,

where now m is not random. We conjecture but shall not

prove that the limiting distribution of v3  is the same

as that of v3. Incidentally, Cohen extensively investi-

gated estimation problems involving the truncated normal

distribution in the 1950's, but never, as far as we can

tell, studied the ellipsoidally truncated normal. See for

example [4].

Finally, v4 is the MLE for v based on observations

of the censored normal distribution, which is to say that

we "see" Xi  if Ji = 1 but learn only that Ji = 0

otherwise. Therefore, this estimator is based on knowing

how many observations are "missing", in contrast to v3 f

which was based only on the Xi's with Ji = I. Actually,

v , Vthen, makes use of exactly the same information as

did v J and JZ; and it is therefore particularly
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appropriate to compare then. Again we conjecture but shall

not prove that v4  has the same asymptotic distribution

as which is the MLE of v based on observing the [np]

smallest Zi's and knowing that there were n observations

altogether. Incidentally, the likelihood for one observation

corresponding to v4  is

(2v) exp (- ) if X'Bx <2

(5.11)

L - Fk(t 2 /v) if XIB-X > t2 .

Now we are ready to derive the asymptotic distributions

of v to v4.

Theorem 5.1: As n -,

(5.12) L(nl/ 2 (v 1 -v)) - N(O,V1 )

where

2 2) a2 a4

(5.13) V1  - 2 2 [Fk(a )(l-Fk( ))-

Fk 2 (a) k

2 2 2  k-2) 2 F2 a2

-F(a k+2 (a )-- * ( k (a 2 ) ( )]
-2 I-ka k))F k+4 k+2
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Proof: v is a function only of the statistics (J,JZ).

We will derive the joint asymptotic distribution of these

two random quantities and obtain the asymptotic distribution

of v1 by applying the delta method. By the central limit

theorem,

1/2-L(n/((J,JZ)' - (UlU 2 ) ')) - N(O,C)

where

(C12 c 22

and (;l,' 2 ) ', and C are, respectively, the mean and co-
22

variance of (Ji,JiZi)' Since Ji is Bernoulli, "l = Fk(a 2),

and by (Al.8), u 2 = vkF k+2(a 2). The variance of Ji is

S11 = Fk(a 2 )(1 - Fk(a 2)) and by (Al.8),

*l2 = vk(l - Fk(a 2))F k+2(a 2). Finally, by (Al.8) and

(A1.9), c 2 2 = v 2 [k(k+2)F (a 2) k 2 F+2 (a2 ] Using
22k+4 k+2

(Al.23), we may rewrite (5.4) as

kF (F1 (7))

k+2 k
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If we define the function

u 2

h(u,u 2 ) =
kF (Fkl (u))

k+2 k 1

then v1 = h(J,JZ) and v = h(il, 2). Applying the so

called delta method we have the result that as n -,

L(/r (Vl-v))- N(O,V I) where

= dh ' (dh)(5.14) V1 
=  C(-)

du du

and the derivative above is evaluated at u (0 ) = 1i2).

It is easy to compute that

(2)
h f fk+2 (a

u1 (0) Fk+ 2 (a 2 )fk(a 2

and

31
2 (0) kF (a
u k+2

Then, using the fact that

f (a 2 ) 2
k+2 a

fk(a 2 k
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a straightforward evaluation of (5.14) reveals that (5.13)

holds.

Before deriving the asymptotic distributions of the

remaining estimators, it will be convenient to record a

simple result concerning the effect of a reparameterization

on the Fisher information.

Lemma 5.1: Let 11 (9) and 12(c) be the Fisher informations

associated with f(x;6) and f(x;g(p)), respectively. If

G and are scalars and g is a differentiable strictly

monotone transformation, then

(5.15) 12(W) = (g' ( 2 II(g(9)).

Proof: The proof is a simple calculation. N

Next we derive the asymptotic distribution of v 2 .

Theorem 5.2: As n

1/2 -
(3.16) L(n (v2 -V) N(OV 2)

where

2 22 Fk (a2) l-Fk(a2))

(5.17) V2  4 2 k
a f (a 2

k

- - --~
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Proof: Note that v2 1 as defined in (5.9), is the MLE of

v when we observe Jl .... 1Jn? which are i.i.d. Bernoulli

2
random variables with parameter p = Fk(t /v). Using

the notation of Lemma 5.1, 1(p) = [p(l-p)] Further-
dp_ -i~l 2

more, since v v a f(a 2

12 (v) = -- (a 2fk(a 2)) 2[Fk(a2 )(l-Fk(a 2))I
V

which is equivalent to (5.17) since V2 = 12 (v)-l.

If there are m observations of X such that

X'B- X < t 2 , then using (5.10), the log-likelihood

expressed as a function of a = tv- /2 is Z(a) where

-1l 1,tr (SB- ) a2(5.18) m i(a) = C + k log a 2 )a -log Fk(a2).
t

Then, the likelihood equation, d 0 is

(5.19) k- + b (a) =1.
t2 k

If we let a3  be the solution to (5.19) and observe that

b2 = 2by definition v3 = t2/a, then we may write

k-1tr (SB - ) k- tr (SB -I

3  (bk (a 3 ) c(k,F k(a 3 )



-78-

an equation which strongly resembles (5.5). The next

theorem shows that v 3  with non-zero probability for

a finite sample size.

Theorem 5.3:

(5.20) tr (SB - ) k V

2  k+2 v3 =

( 5 .2 1 ) t r ( S B - 1 )  k 2 = 3 _ 2

t2  k+2 v3 2 '-
t a3

where a3  is the unique finite positive solution to the

likelihood equation (5.19).

To prove this theorem we shall need a lemma, which

is proved in Appendix 3.

Lemma 5.2: The function s(a) = ka-2 (1 - bk(a)) is

monotone decreasing for a > 0. As a - 0, s(a) - k/(k+2)

and as a - , s(a) - 0.

Proof of Theorem 5.3: We may expand Fk (a 2  in powers

of a as in (A2.i2) to obtain

2ak 2 k a k 4)

Fk (a2) = 2r-a(I - ( ) + a-(--) -o(a )
kk k , T +2 39 k+4

Then,

h.%
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2
log F (a2) const. + k log a a k

4

a k 4o(a4
2 (k+4)(k+2)2

and as a result of (5.18)

-1C- t (SB 1 )
(5.22) m-l(a) = const. + 2 k tr

2 k+2 t2

a k 4
(k+4) (k+2)

Now let c2 = t- 2 tr (SB- ) and observe that

- dZ -2 2 2(am) a ka (1 - bk(a)) - c = s(a) - c If

2 > k/k+2, then by Lemma 5.2, s(a) - c < 0 Va > 0 and

therefore d < 0 V a > 0. Hence, the maximum value of

da

Z(a) is achieved at a = 0. On the other hand, if
2 suhta ~ c  2
c < k/k+2, then there is a unique a such that s(a ) =c

c c
hy Lemma 5.2. Furthermore, ac  is the unique a > 0 such

that d' 0. But, by (5.22), Z(a) is increasing for ada

near 0; since Z(a) - - as a - , there is at least

one local maximum at an a > 0. We may now conclude that

the global maximum occurs at a . Of course, a3 = a . I
c 3 c

Why is it that when t 2 tr (SB ) > k/k+2,

= =? Suppose that X has a uniform distribution in3
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the ellipsoid ix : x'B-ix < t} and let Y = B- /2X.

Then Y'Y = X'B- X and Y has a uniform distribution

in St(0), the sphere of radius t. By (Al.5), the volume

of this sphere is dktk, where dk = Ik//F((k/2)+l),

and its surface area is kd tk l. Hence

E(Y'Y) = (dktkl f r2 kdk r k - l d r = (k/(k+2))t 2

0

.1 2 -1
and t E(X'B X) = k/k+2. Therefore, when

t- 2tr (SB- ) > k/k+2, the sample looks, at best, as if

it is from a uniform distribution. Of course, as v 0,

the truncated normal approaches the uniform distribution.

Before proceeding to the computation of the asymptotic

distribution of v3, we investigate numerically the

dependence of v3 on S in the one dimensional case.
2~

We set B = 1 and s = S and note that v3 = c when

s > Table 5.2 contains some numerical values of

2 2 adtecrepnig 2
s /t and the corresponding v3/s , the factor by which

2
we must multiply s to get our estimate.

Theorem 5.4: As n

1/2-(5.23) L(n (V3-v)) N(0,V 3)

where
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S4v 2 2 -

(5.24) V3 
= 4-F-{ (a 2 ) 2 -bk(a) (a 2+2-k+kbk(a))]J-i

(.4 V3  k k kk

Proof: The derivative of the log of the density in (5.10),

written as a function of a, is

d log t k x'B x k
a- a -- b k (a)!da akt

and the second derivative is

d2log t k x'B- x k k2  a2

2  2 2 + -2bk (a) -!:Tbk(a) (i- abk(a)).
da a t a a

Using the fact that

E(X'B - I X) A-t2 = -(I - bk(a)) ,

t 2 a2 k

where the expectation is taken with respect to t' the

density of the truncated distribution, and recalling (Al.7),

(A2.7), and t2 = a 2v, we find that the Fisher information

for the parameter a is

kk2 
2

(5.23) 1I(a) = 2 (l-bk(a)) + -bk(a) (1 - - b(a)).bkkk bk ()
a a

da -. -3/2
Since T - Ttv it follows by Lemma 5.1 that the

dv 2



-82-

information associated with v is

2(5.26) 12 (v) av2 l(a).

As m

1/2 -- 1
(5.27) L(m (V 3-v)) N(0,1 2 (v) - ) "

But as n ', m/n - p = Fk(a ) Therefore applying (5.25),

(5.26), and (5.27), we have the result in (5.23) with

V3 = (Fk(a 2 )I2(v)) - 1 .

Theorem 5.5: As n -

(5.28) L(n (/2  
4 -v)) N(O,V 4 )

where

(5.29) V = V2 + V3

Proof: The proof is a calculation similar to those done

in the proofs of Theorems 5.2 and 5.4. I

The fact that -1 = V-1 + V- 1  in the preceding

theorem is an instance of a very general theorem suggested
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by P. K. Bhattacharya. We will not give a formal proof

but will simply outline the argument for a simple version

of it. Suppose X has a density f6 (x) and suppose

further that the space in which X takes values, M, is

partitioned into two parts: A and A; so A .V A.

Let Pe = ff(x)dx and define three new random variables,
A

2 truncated versions of X and an indicator based on X:

(5.30) X1 = X[X E A],

(5.31) X = X.I[X ]

and

(5.32) X3  = l[X c A].

Then X1 has density

f(l) Cx) = P-1 f (x) 1[x E -Al

and X 2  has density

(2) =-f (x) (l-P) f,(x)l[x 6
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Of course X3  is a Bernoulli random variable:

Pr (X3 = 1) = P Now let II(8), 12(6), 13(e) be the

Fisher informations associated with X1 , X2, X3  and I(M)

the information associated with X. Then if we suppress

some algebra and assume that all necessary formal manipu-

lations are valid, we may compute

(5.33) ii(e )  f [djlOg T 2 fd
A e Pe

(P8)
2

= f [J-log fa] f dx- 2 '

A P0

(5.34) 1 f [e 2log l 2 x
2 d6 1 -P e 1 Pea

' 2

f [!-log f]2 f dx (e2
d (1-P0 )

and

(P )2

(5.35) I3 () = P9 (l-Pg)

where (5.35) follows from Lemma 5.1. But using (5.33),

(5.34), and (5.35), we find that

(5.36) I(s) = P.II() + (l-P91 2 (i) + I3 (e).

I'- ] 1 2= 3 .. ..I... Il 1...... 1l....... .. .. ... ..I . .. .



The factors P and (1-P0  appear in (5.36) because

X1and X2are only non-zero with probabilities P0  and

1-P3.

What we have shown is that the information in X can

be partitioned into three easily interpreted parts:

information from 2 complementary truncated random variables

and information from a Bernoulli random variable which

says which truncated variable is observed. No doubt a

theorem stating that such a partitioning is possible can

be proved in considerable generality.

We have now studied five estimators of v: v 0 through v 4

and have obtained their asymptotic variances: V 0  through V 4

given in (5.7), (5.13), (5.17), (5.24), and (5.29). We

define the efficiency of v.i to be E. = V0/V.i for

1 < i < 4. of course by Theorem 5.5, E 4  E= + E *We

also expect that E4> El, since v 4  and v1use the same

data and v4is the MLE. In Table 5.2 we give nume-ical

values for E 1  through E 4  for k = 1,.. .,7 and

p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,

0.99, 0.999. Note that all of the efficiencies depend

only on a = tv 1 / or, alternatively, on p = Fk(a2)

Several interesting remarks may be made about the

results in Table 5.3. Note first that v3is extremely
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inefficient: for example, when k = 1 and p =0.7,

E 3= 0.032. This means that if one bases v3on 1O0r

observations, one will do about as well as one would do

using v 0  when there were 3r observations. It is impor-

tant to remember, of course, that only about 70r obser-

vations will be used in computing v3  the others will

be truncated. Still, however, the result is striking.

A crucial point is that using v 3  is the best we can do

if we decide that we cannot guess the proportion of points

that are not truncated (included in the estimate).

When k =1 and p = 0.7, E2 0.556; hence, not

knowing any of the actual values of the observations

results in a loss of only about 50% of the information.

This remark is less surprising when one considers the

similarity between the mode of estimation used in v2 and,

for instance, the use of the median to estimate the mean

of a normal (see equation (5.9)) . Our next theorem will

demonstrate that v 2  and v 2  are asymptotically equivalent.

Finally, we observe that, in general, E 1/E 4  is about 0.8;

hence, the loss of information due to not using the MLE is

not severe. It seems appropriate to conclude that is

likely to be a reasonably efficient estimate.

Theorem 3.6: As n
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(5.37 [{n / 2 (~'
(5. 37) L (n (v1 -v)) N(0,V1 )

and

(5.38) L(nl/ 2 (v2 -v)) N(O,V2.

Proof: We will prove the theorem by demonstrating that

1/2 )

(5.39) v1 = V1 + 0 p(n-

and

~' v2 (n- / 2 )

(5.40) v2 = + Op (n

First we derive (5.40). We will write Fkn for the

empirical distribution corresponding to Fk* It is

possible to rewrite (5.8) and (5.9) as

S F-1 (p)
(5.41) v2  v -

F, (P)

and

F-1
F' k (p)

(5.42) v = v -1
Fk 1P



-88-

0~(n- /2
By a Taylor expansion, since p-p = Op(n

(5.43) F 1 () F -p + p P o 0p(n /2

fk (Fk I (p))

and using the Bahadur representation [2),

-11~- _(n /2 )

(5.44) F-1(p) = Fk (p) +  - + O(n/

fk (Fk (p))

Hence, by (5.43)

Fk1 (P) p - p + n/2)

(5-45)) + 0(n
Fk Fk (P)fk (Fk (p))

and from (5.44) we derive

F-1

(5.46) kn (p)- - 1 - p p + o (n
Fk (p) Fk (p)fk (F p ) )

But (5.45) and (5.46) imply (5.40). The argument for

(5.39) is very similar. First observe that we may rewrite

(5.4) and (5.5) as follows:

Fk (p)

r' xdF kn ~
- I0 t n__q_

(5.47) v [
UFk (p) (rip]

xdF k
0
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and

F-1kn (p)

1 np(5.48) v, = v- Fklp [np]

f xdFk
0

Using a Taylor expansion we may write

(5.49) f xdFk xdFk +  (p) (P-P) +0 (n-/2

o 0 p

and by the uniformity lemma of chapter 3 (Lemma 3.3), since

(5.44) holds and p-p 0 (n- /2

F-1k (p) Fk ( P )  F-(p)kn kkn p

(5.50) f xdFkn =f xdFkn + xdFk
0 00

Fk (p)
- xdFk + O (n - /2

-i
Fk (p)

- F xdFkna

p(

*o (n- /2).
p
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Substituting (5.44) in (5.50) we obtain

-1 -1 (p)Fkn Fk 1 /(5.51) fnxdFkn = F xdFkn + Fk (p)(p-p) + o p(n-/2)

0 0

-1
Fk

If we divide f xdFkn by (5.49) and expand, then we find
0

Fk1 (p) Fkl (p)

XdFkn 0 XdFkn F (p)(P-P) _1/2

(5.52) 0) + (n

F k (p) F (p) Fk (p)

f XdFkn f xdFk f xdF k
0 0 0

-k1 -1

F (p) F (p) 1

Since f XdFkn = f xdFk + 0 (n /2), we may
0 0 P

write (5.52), using (5.47), as

Fk (p)
k

XdFkn F-1 (P)(P-P) /2
(5.53) v/V_ 0 k +o (n

Fk (p) Fk (P

f xdFk f xdF k
0

Fk (p)

But using (5.48), and dividing (5.51) by xdF,
0

we may conclude

Fk (p)

S XdFkn F.() (C -) /2
~ 0 -l- -2(5.54) Vl/V =o-(_ /o),

F (p) Fk I (p)

I xdFk xdF,
0 0
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which demonstrates (5.39).

All of the analysis we have done in this chapter has

been based on the assumption that B is known and that the

mean of the normal distribution we are working with is 0, or,

equivalently, that it is known, say equal to p. What

relevance do our results have when p, B are themselves

unknown, as is the case in most applications?

It is interesting that the information matrix

I(v,P,B) has a block diagonal structure, that is,

(5.55) I(v,li,B) = (Il(v) 0

0 12 (", )

when the density oi X is

(5.56) '(x;v,',,B) (2-v)- /2 exp 'B

To see that this assertion is true, we first reparameterize

D by a differentiable transformation (u,B) = g(a) , where

ranges over some open subset of a Euclidean space.

(Recall that B is subject to the restriction B = 1.)

Then we may rewrite (5.36) as
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k1

(5.57) log q(x;v,e) = - I log (27rv) -2vh(x,e)

where h is a differentiable function. By differentiating

(5.57) with respect to e and noting that E(-L log 0,

we conclude that E(-@ h(X,6)) = 0. But that implies that8 2 6

E( '2 = E((2v2 )- ' h(X,6)) = 0, which means that (5.55)

is true. Of course, the consequence of the fact that the

information matrix is block diagonal is that the asymptotic

distribution of the MLE of v, v, is the same whether (p,B)

is known or is simultaneously estimated with v. So, for

instance, the asymptotic variance of v0' V0 = 2v2/k,

given in equation (5.7) is also the asymptotic variance

of the MLE of v when u and B are estimated at the same

time.

The information matrix will also be of the form

shown in (5.55) if we observe the truncated or censored

version of (5.56), the densities for which are given in

equations (5.10) and (5.11) (though in these formulas x

must be replaced by x-i). But the block diagonal structure

is dependent on having the truncation or censoring done

with respect to the correct values of 4 and B!

Certainly, in our applications the truncation or censoring

is done in a data dependent way and therefore does not
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satisfy this requirement.

In practice, we expect that the estimates of p~ and

B to be used in the various scale estimates will be de-

rived from ellipsoidal trimming. Conceivably, then, one

could derive the asymptotic distributions of v2 ' v3 ' v4

(when p and B are estimated) using the knoy~n asymptotic

distribution of the stationary point of the IET algorithm.

Such a line of analysis appears to present considerable

difficulties, although perhaps they are not insurmountable.

The asymptotic distribution of U (see (5.1)) follows

as a direct consequence of the distribution of the

stationary point; since v =lIl/k , its distribution

may be computed directly.

We shall not attempt to carry out any of the above

program here and it is true, as a result, that our knowledge

concerning the various estimates of scale remains fundamentally

incomplete. It is our hope nevertheless that the various

numerical and analytical results concerning V1,...,V 4  do

provide a rough picture of these estimators. For instance,

they provide, at the minimum, lower bounds to the true

squared error.

~ -j- j
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Chapter 6

Conclusion

In this thesis we have studied the iterative ellipsoidal

trimming algorithm from a number of different points of

view. Based on our experience with IET as a data analytic

tool and the plausibility arguments in Chapter 2 concerning

-its behavior, we would conclude that it can serve an

important role as a clustering algorithm when the clusters

being sought are approximately ellipsoidal. It will be

especially useful when the statistician wishes to simulta-

neously find a cluster and estimate its location and shape

(perhaps as a prelude to searching for smaller hidden

clusters in its tails).

in Chapters 3 and 4 we obtained analytical and

numerical results concerning the performance of lET in

its capacity as an estimation tool. Certainly the most

pressing work still to be done in that area is the proof

of the conjecture we stated at the end of Chapter 3 con-

cerning the distribution of the stopping point of IET.

The fifth chapter dealt with the problem of estimating

the scale of a cluster after one has already obtained

estimates of its location and shape. The status of the

results presented there is somewhat unsatisfactory, as
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the results we derived concerning asymptotic 
variances

of the estimates were based on the assumlptionl 
that the

location and shape are known, rather than estimated.
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Appendix 1

Spherically Symmetric Distributions

In this appendix we collect a variety of results

concerning spherically symmetric distributions. Suppose

that, as in chapter 3, g(t) is a nonnegative function

defined on the nonnegative reals whose behavior as t -

and degree of differentiability are suitable for our pur-

poses, where "suitable" means that all of the formal

manipulations involving g that we perform are, in fact,

valid. We generate a spherically symmetric density for

each dimension k > 1, f(x) = ck g(Ix 2), where

2=k 2 2
2 = k xi  The density of the generalizedgeneralized (k)

i=l

2variable, T = , where X ,, f(x), may easily be derived

using (Al.6) and equals

(Al.1) fk(t) = r (k/2 )ckk ~ r(k/2) c k

and its cdf is Fk(t).

From each f(x), in turn, we may generate a multi-

variate location-scale family, f(y; ;j, A), where

f(y; w, A) is the density of

Y = A1 + A x,
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and A is symmetric and positive definite. It is

reasonable to refer to these distributions as ellipsoidal

distributions. Incidentally, while the expectation of Y

is P, the covariance of Y is not, in general, A. Since

the covariance matrix for X is just (2 7rck) Ck+2Ik

(a fact which follows from equation (Al.7) below), the

covariance of Y is Z = (27ck) 1ck+2A.

If g(t) = e-t/2, then the preceding construction

leads to the multivariate normal family of distributions,

with c ( k/2 Another, more general, form for g

that is a vauable source of examples is

(AI.2) g(t) = exp(-rtS).

In this case, ck = 7k/2r-k/2Ss-1F(k/2)-Ir(k/2s).

The bias reducing function introduced in Chapter 3,
-li

ck g(a
2

bk(a) = 2 , can be easily reexpressed in termsFk (a 2 )/V k (a)

of fk and F k as

2a2 fk(a
2

(A1.3) bk(a) =
kFk(a 2

or as
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2i
-1 2 fk+2 (a 2)

(Al. 4) bk(a) = (21rck) C 2 f
k k+2 Fk(a2)

by making use of the formula for the volume of a

k dimensional sphere of radius a,

k/2 k
Vk(a) r((k/2)+l)

given, for instance, in Apostol [1, p. 411]. It will be

useful to record, in addition, that the surface area of

such a sphere is

2nk/2 k-i
(A1.6) Ak(a) = r(k/2)

The next lemma expresses a variety of integrals in

terms of the generalized X2 density and distribution

function. We will set S = Sa(0), the ball of radius a

centered at the origin.

Lemma Al.l:

(Al.7) f(x'x)ck 1 g(x'x)dx = k.M1
S

(Al.8) f xlck g(x'x)dx - M
s

(Al.9) f(X'X)2ck g(x'x)dx = k(k+2)M 2
S
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(AI1) f XCk1 g(x'x)dx =3M 2

2 2 -1
(AI.11) f X1 X2c k g(x'x)dx M M

s2

(A1.12 f~x' -1
(Al12)f~xx)c g'(x'x)dx =kM 3

(A1.13) f x2C- 1 g' (x'x)dx =M

(A1.14) J(xx 2C k 1g'(x'x)dx = k(k+2)M 4
S

4 -1(A1.15) f xl1C k g'(x'x)dx = 3M 4
S

2 2 -14

where

(A1.17) M 1= (2irck)- + F k2(a 2

(A.1) 3 (1 r k)1 Ck+2 fk+2(a2 Fka2)/

(Al..18) M= (27T)- -2 -1 c f (a 2  (-T a2)2
4 ~k k+I4 k+4k k2k2
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Proof: We may demonstrate (A1.7) by putting r2 = XIX,

integrating with respect to Ak(r)dr, and then setting

2
t = r Of course (AI.8) is a tri.vial consequence of

(A1.7). To derive (Al.9), use the same substitutions as1/2

for (AI.7). To obtain (AI.10), let r = (x'x) , and

Yi = xi for I < i < k-1; then the integral may be written

as

a -1 2 2 21/2 4
2f dr ck g(r )r 1 2 2 (r - yi) yldy.

0 E y.<r i<k
i<k

But it is easy to show that

2 2 2 1i/2dy
f 2 _2(r -Yl- E Yi D"'"2.. dYk-i2 2 2

y2< r Y 1<i<k

l<i<k

= (r2_y2) (k-3)/2 
(k-l)/2

y r((k-l)/2)

from which it follows that

32  2 12 3 k/2 k 2

2 2 - i' 2-l/ .dy-- k(k+2-1(k72r
yi<r i k

i<k

Then, finally, the integral in (Al.10) is straightforward
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2
to obtain. Since (x'x) is the sum of k terms of the

4 2 2
form xi, and k(k-1) terms of the form xix j  (ij),

by symmetry we conclude that

f(x'x) 2 f(x)dx = k f x~f(x)dx + k(k-l) f xlx2f(x)dx
S S S

which implies (Al.ll). The five integrals, (Al.12) - (Al.16),

are entirely analogous and are obtained in a similar way,

the only difference being that an integration by parts is

necessary to get rid of the g' (hence, the presence of

2 terms in the expressions for M3 and M 4) .

It follows from equation (Al.8) that the covariance

of the truncated spherically symmetric distribution is just

2
2 - Fk+2 (a)

(Al.21) Cov(XIX'X < a) =( 2 lTck) ck+2  22)Fk (a

Similarly, the covariance of the truncated ellipsoidal

distribution is

-1 2 -l F k+2 (
(Al.22) Cov(Y (Y-U)'A (Y- p)a 2 ) = ( 2r7Ck)-I C k2 A

Fk(a

-l
Recalling that the covariance of Y is 7 = (27 ck) Ck+ 2A,

and defining Fk (Fkl()

(A1.23) c k,p) k 2 k

p

* --
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where p = Fk(a 2), we may finally write the covariance of

the truncated distribution as simply c(k,p)Z.

-4=

-t ...- -
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Appendix 2

Multivariate Normal Distribution

Our two intentions in this appendix are to specialize

the results of appendix 1 to the normal distribution and

to give some detailed analytical and numerical information

about the function bk(a) in this case.

k/k

First note that since ck = (2r)k / 2 when

X % N(0,Ik), as we shall always assume in this appendix,
1 n-1't -2 -lI

it follows that (27rck-ck+2 = 1 and (21)ckCk+4  ,

which results in several simplifications in the formulas

of appendix 1. For example, (Al.4) becomes

2f k+ (a 2

(A2.1) bk (a) k+2(2
F (a
k

A well known property of the chi-squared distribution is

that

(A2.2) 2 fk+2 (t) = Fk(t) - Fk+2(t),

a fact which may be verified by differentiating both sides

of the equation (and which is not true in the general

spherically symmetric case). By making use of (A2.2), we

find that equations (AI.17) - (Al.20) may be greatly

simplified. Now,
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!(A2.3) M1 = Fk+2 (a2)

(A2.4) M= Fk+4 (a
2)

1 2+

(A2.5) M F k+2

(A2.65) M 1 (a 2

(A2. 6) M4 - iFk+4 (a 2 ).

Actually, (A2.5) and (A2.6) follow immediately from (A2.3)

and (A2.4), since g'(t) = - 2(t) for the normal case.

Another important fact is that as a result of (A2.1) and

(A2.2),

2
Fk+ 2 (a

(A2.7) bk (a) = 1 Fk (a 2

But as a consequence of (A2.7) we find that the covariance

of the truncated multivariate normal (the specialization

of (Al.22)) is:

-1 2
(A2.8) Cov(YI(Y-ui)'7 (Y-u) < a 2 ) = (l-bk(a))Z.

Another way of saying the same thing is that for a normal

distribution, by (Al.23),
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(A2.9) c(k,p) = 1 - bk((Fkl(p))
/ 2).

We collect a few facts about bk in the next lemma.

Lemma A2.1: The function bk(a) is strictly decreasing on

[0,). As a goes from 0 to , decreases from 1

to 0. Furthermore,

(A2.10) bk(a) (k/a)bk(a)(1 a /k - bk(a))

and

(A2.11) bk(a) = 1 - a2/(k+2) + o(a 2) as a * 0.

Proof: Let rk = [2 k/
2r(k/ 2 )] -i Then,

fk(a 2 rka k-2(1 - a 2/2 + o(a 2))

and

(A2.12) Fk(a 2) 2k-lrkak (1 - (k+2)- Ika 2/2 + o(a 2)).

Therefore, using (AI.3),

bk(a) = - a2/2)(1 + (k+2)- Ika 2/2) + o(a 2)

7A
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which implies (A2.11), which in turn implies that bk 1

as a 0. To prove that bk is decreasing we shall show

that

(A2.13) bk(a) > 1 - a 2/(k+2) V a > 0,

kI
which, in conjunction with (A2.10) and the fact that bk > 0,

implies the result. Of course (A2.13) is trivially true

2 2 2
when a > k+2. So assume a < k+2, let t a , and call

t) 2tfk (t)
d(t) = kFk(ET - (1 - t/(k+2)).

Then it will suffice to show d(t) > 0 for 0 < t < k+2.

Let d0 (t) = d(t)Fk(t)/(l - t/(k+2)). Since d0  has the

same sign as d, it will be enough to prove that d0 (t) > 0,

or since d0 (0) = 0, that d0 (t) > 0 for 0 < t < k+2.

But

,2f k (t) t 2
d 0 ( t ) = klt(-2) 2 k+2) > 0

d () =k (1- t/ (k+2) ) 7 !+2

for 0 < t < k+2.

Our next result describes the asymptotic behavior of bk.
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Lemma A2. 2:

(A2. 14) bk((FkI(p)) 1 / 2 ) (2/k) 1 / 2  ((P-1(p) as k

(A2.15) bk((Fk1 (p)) 1 / 2 ) =

1- ((k/2)+l)2/k-2/k (p2/k)
(k/2) + 1 + o as p 0

Proof: V2 fk(k + a /2) - $(a) as k -

and

Fkl(p)-k -D -(p) as k -.

Hence, /2 fk(Fk (p)) - p(-i (p)) as k -.

But then

(k/2) / 2 bk((Fk ( p ) ) 1/2) = (2/k) 1/ 2 FkI(p)fk(Fk1 ( p ) ) / p

-1 1/2- fk(Fk (p))

(/)1/2 ( k ( p - k + (k/2)12

Vfk

-1 ( ))
~ ~ as k4p

which implies (A2.14).

By (A2.12),
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p k(a (2k)k/2 a- + o(a k as a -~ 0.
k2 r(k/2)

Hence

a 2= [2 k/2 r((k/2)+l)pl 2/ (2/k) as p -~ 0.

Using (A2.11) we conclude that (A2.15) holds.U

We end this appendix by presenting some numerical

values of b k in Table A2.1.
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Appendix 3 - Proof of Lemma 5.2

We prove Lemma 5.2.

Lemma 5.2: The function s(a) = ka-2 (1 - bk(a)) is mono-

tone decreasing for a > 0. As a - 0, s(a) * k/(k+2)

and as a -, s(a) - 0.

Proof: By (A2.11) in Lemma A2.1, bk(a) = - a2/(k+2) + o(a 2)

Therefore, s(a) = k/(k+2) + o(l) as a * 0. Since bk  is

bounded, s(a) - 0 as a - =. After some algebra we find

that

s' (a) = -ka - 3 12 + (k-2-a2 )bk(a) - kb 2 (a)].

Let

=x -
2 (k-2-a 2

Q(x) )x - 2/k.

Then, s'(a) < 0 iff Q(bk(a)) < 0. The quadratic equation

Q(x) = 0 always has both a positive and a negative solution;

we define hk (a) to be the positive solution:

a2+2-k 2 1/2 a22_
hk(a) = ) 2k + 2/k] a +2-k
k 2k ,2k

Since as x *+ -, Q(x) *+ -, we may conclude that
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Q(bk(a)) < 0 iff bk(a) < hk(a), since bk(a) > 0 V a > 0.

Note that hk (0 ) - 1 and, therefore, hk (0 ) - bk(O) = 0.

We will show that gk(a ) = (hk(a) - bk(a))Fk(a 2)/hk(a) is

positive for all a > 0 by showing that its derivative

is always positive. Let s = a2, q = (s+2-k)/2k, and

r = (q2 + 2/k) I/2. Then, after a tedious computation we

find that

Sk ( s )  (k+2) ((k+2) 2 - s(k-2))gk(s) = -72 k2  2kr (r-q)2 3

It will suffice to show that

k+2 (k+2)2 _ s(k-2)> I I.~-2
2f3

k 2k

But upon squaring and expanding both sides of this inequality,

and after more tedious algebraic manipulations, we find
2 2

that it is equivalent to (k+2) > (k-2) , which is, of

course, true for k > 0. I

*..-# .
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Figure 2.1

Note: This figure represents one iteration of IET in one
dimension.

Figure 2.2

Figure 2.3

Note: The stopping "window" of IET may contain two clusters
if p is too big. Figures 2.2 and 2.3 illustrate this
phenomenon in 1 and 2 dimensions, respectively.
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Table 2.1 - Example 1

1i 12 1L1 1 IL 21

-2 2 8 18

-2.17 2.98 11 15

-1.51 3.52 14 12

-1.05 4.25 18 8

-0.53 5.72 20 6

-0.23 6.80 23 3

0.17 10.75 25 1

0.45 25 25 1

Note: The successive estimates are produced by k-means 1

operating on 8 N(-2, 1) and 17 N(2, 1) observations

and one outlier at x = 25.

Table 2.2 - Example 2

2 - 2
1 I 2_ r 2_ JL 11 IL 21

-2 1 2 1 8 18

-2.18 0.59 2.98 29.8 6 20

-2.21 0.15 2.47 29.3 3 23

-2.41 0.013 1.89 27.8 2 24

-2.49 10- 4  1.72 27.3 0 26

Note: The successive estimates are produced by

k-means 2 operating on the same sample as was used in

Example 1.
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Table 3.1

p -i (l-p) p-l ( -lp))

0.8 -0.84 0.35

0.5 0 0.80

0.2 0.84 1.40

0.1 1.28 1.76

0.001 3.09 3.37

Table 4.1 - Values of mk

mk 2-

1 0.798 0.363

2 0.886 0.215

3 0.921 0.151

4 0.940 0.116

Note: Mk is given in equation (4.1).
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Table 4.2 - Simulation A

e0 el e2 e3  e4

W 2 = 0 0.092 0.109 0.124 0.133 0.138

(0.004) (0.006) (0.007) (0.008) (0.008)

112 = 1 '0.104 0.126 0.148 0.161 0.168

(0.006) (0.006) (0.007) (0.008) (0.008)

142 = 2 0.154 0.146 0.155 0.165 0.170

(0.006) (0.007) (0.007) (0.008) (0.008)

= 3 0.209 0.152 0.152 0.161 0.170

(0.006) (0.008) (0.008) (0.009) (0.009)

= 4 0.267 0.159 0.151 0.155 0.160

(0.007) (0.007) (0.007) (0.007) (0.007)

Note: In all runs, k=2, n= 100, n2 = 0, n3 =0, s= 100,

Pi = 0.5 for 1 < i < 4, and j2 = j is to be interpreted as

= (j,0). Standard errors are in parenthesis. In all

simulations, u= (0,0).
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Table 4.3 - Simulation B

e0 eI e2 e3 e4

12= 0 0.089 0.103 0.122 0.122 0.114

(0.004) (0.006) (0.006) (0.006) (0.006)

2 = 1 0.096 0.111 0.127 0.131 0.127

(0.005) (0.006) (0.006) (0.006) (0.006)

2= 2 0.157 0.142 0.141 0.143 0.134

(0.006) (0.006) (0.008) (0.007) (0.008)

2= 3 0.206 0.149 0.136 0.133 0.119

(0.007) (0.008) (0.008) (0.007) (0.006)

U = 4 0.269 0.169 0.142 0.125 0.109

(0.007) (0.008) (0.008) (0.008) (0.006)

Note: Same parameters as in simulation A except for

Pl 0.5, P 2 = 0.6, P 3 = 0.7, P 4 = 0.8.



-118-

Table 4.4 - Simulation C

e0 I 2  e3 e4

112 = 0 0.092 0.100 0.105 0.107 0.107

(0.004) (0.005) (0.006) (0.006) (0.006)

P = 1 0.107 0.114 0.124 0.128 0.129

(0.005) (0.006) (0.006) (0.006) (0.006)

P2 = 2 0.161 0.136 0.136 0.135 0.135

(0.006) (0.006) (0.007) (0.007) (0.007)

. 2 = 3 0.199 0.116 0.112 0.112 0.111

(0.006) (0 .006) (0.006) (0.006) (0.006)

I2 = 4 0.273 0.117 0.120 0.120 0.120

(0.008) (0.007) (0.007) (0.007) (0.007)

P2 = 5 0.329 0.103 0.107 0.111 0.112

(0.007) (0.006) (0.006) (0.006) (0.006)

Note: Same parameters as in simulation A except for

Pi = 0.8 for 1 < i < 4.

* --.. 9, - -* *. ,.4L
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Table 4.5 - Simulation D

Run

1. (3, 100, 0.5, 0.5, 0.5, 0.5)

0.302 0.195 0.175 0.171 0.169

(0.015) (0.010) (0.009) (0.008) (0.008)

2. (3, 100, 0.5, 0.6, 0.7, 0.8)

0.280 0.186 0.143 0.121 0.106

(0.013) (0.010) (0.008) (0.007) (0.007)

3. (3, 100, 0.8, 0.8, 0.8, 0.8)

0.310 0.126 0.111 0.110 0.112

(0.015) (0.006) (0.006) (0.006) (0.006

4. (4, 100, 0.5, 0.6, 0.7, 0.8)

0.328 0.202 0.145 0.111 0.096

(0.016) (0.010) (0.007) (0.006) (0.005)

5. (4, 400, 0.5, 0.6, 0.7, 0.8)

0.533 0.270 0.170 0.126 0.099

(0.026) (0.012) (0.008) (0.006) (0.005)

6. (4, 400, 0.8, 0.8, 0.8, 0.8)

0.511 0.138 0.109 0.106 0.105

(0.027) (0.008) (0.006) (0.006) (0.006)

7. (6, 400, 0.5, 0.6, 0.7, 0.8)

0.558 0.265 0.171 0.131 0.102

(0.029) (0.012) (0.008) (0.006) (0.005)

Note: The format is
2

e 0  e 1  e2  e 3 e4

e 0  e 1  ee3 e4

For all runs, n= 100, n n 3 =10, s100, K 2.

-- ~~~~~~~ 4t---.--.--- - - -
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Table 4.6 - Simulation E

Run

1. (3, 10, 0)

0.167 0.139 0.139 0.131 0.121

(0.005) (0.005) (0.005) (0.005) (0.004)

2. (6, 10, 0)

0.279 0.129 0.132 0.124 0.115

(0.005) (0.005) (0.005) (0.005) (0.004)

3. (7, 10, 10)

0.596 0.193 0.137 0.118 0.100

(0.020) (0.008) (0.005) (0.004) (0.004)

4. (7, 10, 20)

0.707 0.219 0.136 0.103 0.147

(0.024) (0.006) (0.005) (0.004) (0.004)

Note: The format is the same as in simulation D except that

the parameter vector is (p 2 ' n 2 1 n3)" For all runs

2
n = 100, 2 = 400, Pl = 0.5, P 2 = 0.6, P 3 = 0.7, P4 = 0.8,

and k = 4.
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Figure 5.1

Distribution of Mahalanobis Distances

witnin a Cluster

DI 2
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Table 5. 1

Values for c(k,p) in the normal case

k/p 0.025 0.50 0.99

1 0.033 0.143 0.925

2 0.137 0.307 0.953

7 0.425 0.590 0.980
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Table 5. 2

Numerical values of v 3 when k 1

s 2/t 2 /

0.081 1.006

0.108 1.03

0.146 1.10

0.193 1.29

0.214 1.42

0.235 1.66

0.255 2.00

0.274 2.53

0.290 3.44

0.324 12.40
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Table 5.3 - Efficiencies of Scale Estinmators

p k E1  E2  E E

1 0.012 0.055 0.000 0.055

2 0.076 0.100 0.000 0.100

3 0.098 0.131 0.000 0.132

.1 4 0.113 0.153 0.001 0,154

5 0.125 0.170 0.001 0.171

6 0.135 0.183 0.002 0.185

7 0.143 0.194 0.002 0.196

1 0.101 0.120 0.000 0.120

2 0.155 0.199 0.001 0.200

3 0.191 0.246 0.002 0.249

.2 4 0.216 0.278 0.004 0.282

5 0.234 0.300 0.006 0.305

6 0.248 0.316 0.007 0.324

7 0.260 0.329 0.009 0.338

1 0.158 0.194 0.000 0.194

2 0.238 0.297 0.003 0.300

3 0.283 0.351 0.007 0.358

.3 4 0.314 0.385 0.011 0.396

5 0.335 0.407 0.015 0,422

6 0.352 0.424 0.018 0.442

7 0.366 0.437 0.021 0.458

1 0.228 0.277 0.001 0.278

2 0.324 0.391 0.009 0.400

3 0.376 0.445 0.017 0.462

.4 4 0.409 0.477 0.024 0.501

5 0.433 0.497 0.030 0.527

6 0.450 0.512 0.035 0.547

7 0.465 0.523 0.040 0.562

1 0.307 0.368 0.004 0.372

2 0.414 0.480 0.020 0.500

3 0.469 0.528 0.034 0.561

.5 4 0.503 0.553 0.045 0.598

5 0.527 0.569 0.054 0.623

6 0.545 0.580 0.062 0.642

7 0.559 0.588 0.068 0.656

1 0.398 0.463 0.012 0.475

2 0.510 0.560 0.040 0.600

3 0.564 0.594 0.062 0.656

.6 4 0.597 0.610 0.079 0.690

5 0.620 0.620 0.092 0.712

6 0.637 0.625 0.103 0.728

7 0.650 0.629 0.11 0.740
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p k E E2  E 3 E4

1 0.503 0.556 0.032 0.588
2 0.612 0.621 0.079 0.700
3 0.662 0.637 0.111 0.748

.7 4 0.692 0.641 0.134 0.775
5 0.712 0.642 0.152 0.794
6 0.727 0.642 0.165 0.807
7 0.738 0.640 0.176 0.817

1 0.628 0.632 0.079 0.712
2 0.723 0.648 0.152 0.800
3 0.765 0.639 0.197 0.836

.8 4 0.789 0.630 0.226 0.856
5 0.805 0.621 0.248 0.869
6 0.817 0.614 0.265 0.879
7 0.826 0.607 0.278 0.886

1 0.781 0.640 0.207 0.847
2 0.847 0.589 0.311 0.900
3 0.874 0.555 0.365 0.920

.9 4 0.890 0 .532 0.400 0.932
5 0.900 0 .515 0.424 0.939
6 0.907 0 .502 0.442 0.944
7 0.913 0.491 0.457 0.948

1 0.876 0.552 0.368 0.920
2 0.917 0.472 0.478 0.950
3 0.934 0 .430 0.531 0.961

.95 4 0.943 0,404 0.563 0.967
5 0.949 0.385 0.585 0.971
6 0.953 0.372 0.602 0.973
7 0.956 0.361 0.615 0.975

1 0.970 0.280 0.703 0.983
2 0.982 0.214 0.776 0.990
3 0.986 0.185 0.807 0.992

.99 4 0.988 0.168 0.826 0.994
5 0.990 0.157 0.838 0.995
6 0.991 0.148 0.847 0.995
7 0.991 0.142 0.854 0.996

1 0.997 0.068 0.930 0.998
2 0.998 0.048 0.951 0.999
3 0.999 0.039 0.960 0.999

.999 4 0.999 0.035 0.965 0.999
5 0.999 0.032 0.968 C.999
6 0.999 0.030 0.970 1.000

7 0.999 0.028 0.972 1.000
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Table A2.1 Numerical Values for b k

k

p 1 2 3 4 5 6 7

a 0.126 0.459 0.764 1.031 1.269 1.485 1.683
1 bk(a) 0.995 0.948 0.887 0.831 0.782 0.741 0.705Ia 0.674 1.177 1.538 1.832 2.086 2.313 2.519

b k (a) 0.857 0.693 0.593 0.526 0.477 0.440 0.410

a 1.282 1.794 2.154 2.447 2.700 2.925 3.131
.8bk(a) 0.562 0.402 0.326 0.281 0.249 0.226 0.208

a 1.960 2.448 2.795 3.080 3.327 3.548 3.751

.95 b k(a) 0.241 0.158 0.123 0.103 0.090 0.081 0. 074

a 2.576 3.035 3.368 3.644 3.884 4.100 4.298
.9b k(a) 0.075 0. 047 0.035 0.029 0.025 0.022 0.020

Note: a (F [k- I /
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